PRIVATE AND SOCIALLY OPTIMAL NITROGEN FERTILIZER RATES FOR CANOLA IN SASKATCHEWAN

Michelle Ross MSc.

Advisor: Dr. Richard Gray Ph.D.

UNIVERSITY OF SASKATCHEWAN

Introduction

- The Canadian agricultural industry accounts for 10% of national annual GHG emissions
 - Major contributor N₂O from N fertilizer application^[1].
- Government of Canada national target to reduce absolute levels of GHG emissions from fert application by 30% from 2020 levels by the year 2030^[1].

Introduction

- Over 2005-2019, Canadian fertilizer use increased by 71%,
- Resulted in N₂O emissions increasing by 54% over the years 2005-2019^[2] (see Figure 1).
- Canola is a high N use crop
- Growing demand for edible oil, seed, meal and biodiesel products^[3]

^[1] Government of Canada, 2022
 ^[2] ECCC, 2022
 ^[3]Harker, et al., 2011

Figure 1 Canada's Direct and indirect N_2O emissions from synthetic fertilizer application from 2005 to $2019^{[1][2]}$.

Background

- There is no mandatory reduction in N fertilizer use in Canadian
- AAFC has stated they want to support **voluntary** measures for producers to reduce their emissions

Figure 1 Canada's Direct and indirect N_2O emissions from synthetic fertilizer application from 2005 to $2019^{[1][2]}$.

Previous Literature

- Producers are applying N at rates above those that are privately optimal (Rajsic et al., 2009; De Laporte, et al., 2021)
- Reducing N application through a cap or tax could result in both environmental and farm profit advantages (De Laporte, et al., 2021; De Laporte, et al., 2021)

Research Objectives:

Optimizing N fertilizer application is crucial for farm profitability, and GHG mitigation therefore this study will:

- Estimate the economic private optimum rate of applied N for Saskatchewan Canola using a large, producer reported field-scale data set
- 2. Estimate the marginal abatement cost for direct N₂O emissions from N fertilizer application in Saskatchewan.
- Assess impact of hypothetical policies of a 1) Pigouvian tax on N fertilizer use and 2) regulated 30% reduction in N fertilizer emissions

Data

- Producer reported field level data (2011-2019) from Saskatchewan Crop Insurance Corporation (SCIC)
- Over 47,059 canola field observations across 20 of the 23 grain cropping risk zones of Saskatchewan

Figure 3 Grain risk zone regions of Saskatchewan as classified by SCIC^[14].

Table 2: Descriptive statistics of variables in canola production model.

Variable	Mean	St.dev	Categor
Yield ^a (kg ha ⁻¹)	2370	559	Fungici
Nitrogen ^a (kg ha ⁻¹)	109	25.6	Fur
Phosphorous ^a (kg ha ⁻¹)	32.3	10.7	No
Potassium ^a (kg ha ⁻¹)	1 30	8 50	Previou
Sulphur ^a (kg ha ⁻¹)	20.8	10.2	H
Seeding date ^a (days after May 14)	20.0	7.66	
Growing Social Provinitation ^b (mm)	9.00	7.00	Herbici
Growing Season Precipitation [*] (initi)	243	75.1	Rou
Avg Precipitation ^b (mm)	274	51.3	Lib
Variety index ^a (% of L252)	93.3	9.1	Cle

Categorical Variable	Mean
Fungicide ^a	
Fungicide	30.9%
No Fungicide	69.1%
Previous crop ^a	
Pulse	9.70%
Cereal	57.8%
Oilseed	32.5%
Herbicide system ^c	
Roundup Ready	32.4%
Liberty Link	63.2%
Clearfield	4.40%

^aSource: SCIC, 2019

^bSource: Environment and Climate Change Canada, 2019 ^cSource: Government of Canada, 2021

Methods – Canola Production Function

- Estimated canola production function where canola yield in an individual field is a function of variable inputs, management and agro-ecological factors
- Fixed effects: Producer x Year, Soil class, and Risk zone.
- **Table 1:** Independent variables in canola production model.

Variable Inputs	Management Factors	Agro-Ecological Factors
Nitrogen	Previous Crop	Growing Season Precipitation ^[9]
Phosphorous	Variety ^[10]	3yr Avg Precipitation ^[9]
Potassium	Producer	Risk Zone
Sulphur		Soil Class
Fungicide		Year
2010		

^[9] ECCC, 2019 ^[10] Government of Canada, 2021

Methods – Economic Private Optimal N Rate Calculation

- Using the estimated coefficients of the canola production function, we find the estimated marginal product of nitrogen (*MP_N*) using the first order condition
- The economic optimal rate of N applied is calculated where the expected input cost (w_{tN} ^[12]) to output price (p_{tC} ^[11])ratio is equal to the estimated MP_N

$$\mathbf{MP}_{\mathbf{N}} = \frac{\mathbf{w}_{t\mathbf{N}}}{\mathbf{E}[\mathbf{p}_{tC}]}$$

^[11] Saskatchewan Ministry of Agriculture, 2022 ^[12] Alberta Agriculture and Forestry, 2019

Methods- Emissions Factor Estimates

Figure 4 Indirect and direct N₂O emissions from synthetic fertilizer application in 2018^[1].

Methods – Emissions Factor Estimates

- The social cost of N_2O emission from N application was calculated using direct emission estimates for the black and brown soil zones in Saskatchewan

Table 3: Canada's direct GHG emission factors per tonne of applied N fertilizer (ECCC,2022; Rochette et al., 2018)

Ecoregion	N ₂ O-N (kg)	CO ₂ eq. (t)	Ext. Cost \$/t of N @ \$170/t CO ₂
Brown soil zone	1.60	0.749	\$127 (8.5%)
Black soil zone	3.3	1.545	\$261 (17%)
Eastern Canada	21.1	9.88	\$1680 (112%)

Results of Canola Production Function Dep variable: Canola yield kg ha⁻¹

Variable	Units	Estimates (s.e)	Variable	Units	Estimates (s.e)
Ρ	kg ha⁻¹	2.34 (1.02)*	Ν	kg ha⁻¹	1.86 (1.81)
К	kg ha⁻¹	3.36 (1.18)**	N ²	kg ha⁻¹	-0.0140 (0.00535)**
S	kg ha⁻¹	2.77 (0.973)**	N x Prev. Cereal		-0.155 (0.176)
Variety Index	% of 252 yield	4.66 (2.31)*	N x Prev. Pulse		-0.482 (0.268)+
LL (=1)	[0,1]	529 (155)***	N x Variety Index		0.0444 (0.0155)**
RR (=1)	[0,1]	419(153)**	Num. Obs.		47059
Variety Index x LL		-4.91 (1.63)**	R ²		0.853
Variety Index x RR		-4.26 (1.61)**	R ² Adj.		0.803
Avg. Precip	mm	1.86 (0.771)*	R ² Within		0.038
Avg. Precip ²	mm	-0.00272 (0.00142)+	Std.Errors		Hetero-robust
GS Precip	mm	0.469 (0.352)	FE: Producer*Year		Х
GS Precip ²	mm	-0.00128 (0.0000651)*	FE: Risk zone		Х
Seeding Date	Days after May 14	4.79 (1.30)***	FE: Soil class		Х
Seeding Date ²	Days after May 14	-0.376 (0.0691)***			
Fungicide (=1)	[0,1]	152 (9.01)***	+ p < 0.1, * p < 0.05	5, ** p<(0.01, *** p < 0.001
Prev. Cereal (=1)	[0,1]	21.5 (19.7)			
Prev. Pulse (=1)	[0,1]	63.9 (29.5)*			

UNIVERSITY OF SASKATCHEWAN

Results of Canola Production Function

- The estimated privately optimal N application rate increased with increasing canola variety yield index.
- The estimated privately optimal N rates were significantly higher on cereal or oilseed stubble versus pulse stubble.

Variable	Units	Estimates (s.e.)
Ν	kg ha⁻¹	1.86 (1.81)
N ²	kg ha⁻¹	-0.0140 (0.00535)**
N x Prev. Cereal		-0.155 (0.176)
N x Prev. Pulse		-0.482 (0.268)+
N x Variety Index		0.0444 (0.0155)**

Estimated Private Economically Optimal N Rates for 2019

Table 5: Estimated Optimal N Rates for 2019.

Previous	Mean Variety	Prices (\$ t ⁻¹)		N application rate (kg ha ⁻¹)	
Crop	Index	Canola ^a	Nitrogen ^b	Optimal (s.e.)	Observed
					annual mean ^c
Oilseed	104%	511	1,208	147 (19.1)	121
Cereal	104%	511	1,208	142 (17.5)	119
Pulse	104%	511	1,208	130 (17.5)	118

^a Source: Saskatchewan Ministry of Agriculture, 2022

^b Source: Alberta and Agriculture Forestry, 2021

^c Source: Saskatchewan Crop Insurance Corporation 2019 dataset.

On average, the majority of producers

2019 Frequency of Reported N Application Rates Relative to Estimated Optimal N Rate

•

Observed vs Estimated Optimal N Rate

- 31.2% of the reported field N rates in the dataset were below the estimated optimal N rate at the 95% confidence level over the years 2011-2019.
- Only 2.64% of reported field N applications were above the estimated optimal N rates at the 95% confidence level while the vast majority reported applying N within the 95% interval of the EONR.

Observed vs. Estimated Optimal N Rate

- Observed producer applied N may deviate from the estimated privately optimal N rate due to:
 - Differing individual N response curves
 - Risk Perceptions
 - Logistical Constraints
 - Credit constraints

Policy Scenarios

Assess the effect of two policy scenarios on social welfare and producer return:

• 1) A tax on direct N₂O emissions from N fertilizer

Ecoregion	CO ₂ eq. (t)	Ext. Cost \$/t @ \$170/t CO ₂ = T*
Black soil zone	1.545	\$261 (20%)

2) A 30% reduction in N fertilizer emissions via a 30% reduction in N application

Figure 5: Marginal GHG Abatement (\$/ha): N₂O Pigouvian Tax vs. 30% N Reduction, starting from estimated privately optimal N rates of 142 kg/ha in 2019.

Reduction in GHG Emissions (CO2 eq kg/ha)

Figure 5: Marginal GHG Abatement (\$/ha): N₂O Pigouvian Tax vs. 30% N Reduction, starting from estimated privately optimal N rates of 142 kg/ha in 2019.

Reduction in GHG Emissions (CO2 eq kg/ha)

A **direct N₂O tax** using the 2030 social cost of carbon of \$0.17/kg CO₂eq (\$170/tonne)

- Additional cost of \$261/tonne (20%) of N
- Estimated to reduce N rate applied by 19 kg/ha (13%) from the estimated private optimal N rate
- Reduce producer return by \$34.8/ha^a
- Reduce emissions by 29.8 CO₂eq kg/ha (equivalent to \$5.08/ha)

Figure 5: Marginal GHG Abatement (\$/ha): N₂O Pigouvian Tax vs. 30% N Reduction, starting from estimated privately optimal N rates of 142 kg/ha in 2019.

Reduction in GHG Emissions (CO2 eq kg/ha)

A **30% reduction** in N fertilizer emissions via a 30% reduction in N application

- Results in a DWL of \$3.84/ha
- Marginal cost of abatement of \$0.386/kg CO₂eq (\$386/tonne CO₂eq kg), 200% the 2030 scheduled price of carbon
- Reduce producer net return by \$75.3/ha^a

^a Source: Saskatchewan Ministry of Agriculture, 2022 ²²

Figure 6 Marginal GHG Abatement ($\frac{1}{ha}$): N₂O Pigouvian Tax versus 30% N Reduction, starting from the average observed rate in 2019 of under application of N by 23kg/ha.

Reduction in GHG Emissions (CO2 eq kg/ha)

When applying N at the observed rate in 2019 (underapplying by 23 kg ha⁻¹ relative to the private optimal N rate):

- DWL of a regulated 30% reduction in emissions is **\$15.33/ha**
- Marginal cost of abatement of \$0.612/kg CO₂eq (\$612/tonne CO₂eq) 3.5 times the 2030 scheduled price of carbon

Conclusions

- The majority of Sask canola producers report applying N near or below what we estimate to be the private economically optimal N rate.
- These results contrast previous findings in Canadian economic literature, where it was found the majority of producers were overapplying N relative to the economic optimal rate (De Laporte, et al., 2021).

Policy Implications

- Across-the-board, overly restrictive policies to reduce N fertilizer application rates would lead to reduced:
 - Yields
 - Social welfare
 - Producer profitability

UNIVERSITY OF SASKATCHEWAN

Figure 4 Indirect and direct N₂O emissions from synthetic fertilizer application in 2018^{[1][2]}.

Policy Implications

- Given the wide range of emissions factors across ecoregions and individual farming practices, focusing on optimizing fertilizer use
 - 4R's of Nutrient Stewardship
 - Investing in agronomic research & innovation
 - Extension

Acknowledgements:

Camadian Wheat Board Grain Policy Chair Umiversity of Saskatchewan

Advancing Agriculture through Research

