Tile Drainage: some basics

Stewart Brandt

Northeast Agriculture Research Foundation

Melfort, SK.

Outline

- The Basics of Soil Water
- Why tile drainage
- How it works
- NARF tile drainage project

The Hydrologic Cycle

Relationship Between Soil Texture and Soil Water

Water tables are higher in NE SK than they have been in the past 50 yr

Observation Well Data Available at:

www.wsask.ca

(Water Security Agency Moose Jaw)

Why Tile Drainage?

- Excess water regularly limits crop production
 - Roots need oxygen to function, and saturated soil has no oxygen
- Potential to correct saline soil by leaching out salts

Tile Drainage Effect on Crops

Canola and barley in saturated soil

Removal of excess water

- Increases water use by crops
- Increases crop growth and grain yield
- Increases temporary storage space in soil for water from rains or spring runoff.
- Reduces surface runoff and delays peak streamflow after rains.
- Can leach salts from saline soil.
- Allows more timely field operations with lower equipment costs

Drained soil can benefit from subsoil moisture

Yield Improvement (%) with Tile Drainage

Crop	Manitoba ¹ 1990's	Ontario ² 1979-1986	lowa ³ 1984-1986	Ohio ⁴ 1962-1980
Spring grains	20	22		
Winter wheat		17		
Corn	20	26	10-45	20-30
Soybean		7	4-15	7-14
Potato	10-50			

¹ Verbally reported in surveys; ² Irwin, 1997; ³ Kanwar *et a*l 1988;

⁴ Schwab *et al* 1975, and Schwab *et al* 1985

DRAINMOD Results – Red River Valley ND

Sands, 2011; Sands et al. 2013

http://www.redriverbasincommission.org/Conference/Proceedings/28th_Proceedings/Sands.pdf

100-yr Mean Crop Yield Response

UNIVERSITY OF MINNESOT

Producer Results from MB 1990s – Anecdotal - Largest Tiled Farm Reported Benefits

BENEFITS SEEN !

- Earlier start
- Reduced drown out
- Access for spraying and cultivation
- Compaction reduced
- – HOPE for salinity reduction
- Better timing and utilization of fertilizer/pesticides
- Decreased surface runoff

Where Tile Drainage Fits Best

- High value crops
- Coarser textured soils
- Crops with low tolerance to excess water
- Level topography
- Large amounts of surface residues
- Poor surface drainage
- Ample or excessive precipitation
- Seeding and harvest times are critical

Parallel Drain Spacing and Depths (ft)

(Source: University of Minnesota)

DRAIN SPACING (FT)

Soil Type	Soil permeability	Good drainage	Excellent drainage	Drain depth
Clay loam	Very low	50	35	3.0-3.5
Silty clay loam	Low	65	45	3.3-3.5
Silt loam	Mod Low	90	60	3.5-4.0
Loam	Moderate	140	95	3.8-4.3
Sandy loam	Mod high	210	150	4.0-4.5

Tile Designs

Parallel

- most commonly used design
- usually the most efficient and cost-effective
- The header pipe is installed along the field edge (or edge of the area to be tiled) and the laterals tee in at regular intervals.

Targeted

- designed to target smaller problem areas where other parts of the field do not require drainage.
- Usually a main pipe will be installed and then submains and laterals branch off it.
- This method is best suited to rolling land or fields with springs or salinity pockets.

Where will the water go?

- A tile installation is only feasible if there is a viable outlet
- Point of adequate discharge

- Initiated in fall 2014
- Funded by co-operating farmer, NARF, ADOPT and Shark Ag consulting
- 40 acre site 1 mile E of Melfort Research Farm

Tile Drainage Project

- Salinity mapping done in summer of 2014 prior to tile installation
- Tile drainage system engineered and installed Oct. 2014.
- 3 piezometer wells installed to approximately 10 ft depth.
 - Well 1: on tile drained perennial forage installed fall 2014
 - Well 2 on undrained cultivated cropland. Installed fall 2014
 - Well 3: on un-drained perennial forage installed spring 2015
- Water sampled from wells and outlet for EC measurement starting in fall 2014.

	Shallow EC (mS/m)		60
344.15	- 627.21(13.93 ac)		50-
255.39	- 344.15(14.07 ac)	11	00
194.62	- 255.39(14.41 ac)		40
159.18	- 194.62(14.19 ac)	a II	40
133.41	- 159.18(16.04 ac)		20
114.37	- 133.41(14.91 ac)	aa	30
96.79	- 114.37(16.66 ac)	11 2	20
84.88	- 96.79(14.87 ac)		20
76.25	- 84.88(13.98 ac)	11	10
69.81	- 76.25(14.01 ac)	11	10-
64.31	- 69.81(14.06 ac)	11	
59.06	- 64.31(13.15 ac)	11	0
52.64	- 59.06(13.09 ac)	11	24.9
44.35	- 52.64(13.57 ac)	11	
13.85	- 44.35(11.83 ac)	11	

	Shallow EC (mS/m)		60
344.15 -	627.21(13.93 ac)		50
255.39 -	344.15(14.07 ac)		00
194.62 -	255.39(14.41 ac)		40
159.18 -	194.62 (14.19 ac)	a II	40
133.41 -	159.18(16.04 ac)		20
114.37 -	133.41(14.91 ac)	Be	30
96.79 -	114.37(16.66 ac)	Le l	20
84.88 -	96.79(14.87 ac)	⊲	20
76.25 -	84.88(13.98 ac)	11	10
69.81 -	76.25(14.01 ac)	11	10
64.31 -	69.81(14.06 ac)		~
59.06 -	64.31(13.15 ac)		0
52.64 -	59.06(13.09 ac)		24.
44.35 -	52.64(13.57 ac)		
13.85 -	44.35(11.83 ac)		

Tiles Installation

Tile Drainage Project

- Water levels in wells measured weekly from early spring to freeze up.
- Water flow measured at outlet commencing in early spring and continuing until freeze-up.
- Weekly water sampling for EC measurements at the outlet

Tile Drainage Project Evaluation

- Measure forage yield from the drained and un-drained forage areas.
- Obtain yield maps for the cropped area of the field annually.
- Repeat salinity mapping at 5 year intervals.

Results to Date

- Water began flowing as soon as tiles installed.
 And continued past freeze up.
- Initial EC was 8000 at outlet and 9000 in the creek.
 - Interesting that creek > than outlet: ie most creek
 flow is due to subsoil seep into creeks.
- Water continued flowing until early Dec of 2014.

- Water table was above the top of the well on undrained cultivated land after wet snow in May
- On un-drained forage water table was within 1 ft of surface in mid-May.
- Drained areas, water table was slightly above tiles

Results continued

- Impossible to measure when flow began in spring as creek was above outlet
- First flow measurements made in late April 2015.
- Flow increased after each rainfall event,
 - soil was at or near field capacity above drains.
- Flow decreased to zero by July 20, 2015, but resumed July 27 (5.5 inch rain over 6 hr).

Results

- EC tends to decline after precipitation events, and increase during periods of low precipitation.
 - Range 4000 to 9000.
- In total we have drained in excess of 2 million gallons of salty water from the site
 - Total exceeds 2.5 acre inches.

Results

- No apparent effect on forage yield BUT drained area was highly saline, and undrained much less affected by salts.
- No sign of flooding damage in 2015 Canola crop on drained area.

SUMMARY

- Tile drainage is permitted but requires approvals
 - Water Security Agency
 - Know point of adequate outlet
- Tile drainage is a long term investment
 - Not unlike buying or clearing more land
- Tile drainage likely has much less detrimental impact than surface drainage
 - Slower water discharge and increased temporary storage
 - Less soil disruption
- Tile drainage requires careful planning and consideration
 - Best to have designed professionally

Acknowledgements

Saskatchewan Ministry of Agriculture

The project was supported by the Agricultural Demonstration of Practices and Technologies (ADOPT) initiative under the Canada-Saskatchewan Growing Forward 2 bi-lateral agreement.

Technical support from Jessica Pratchler, Stephanie Ginter, Gayelene Daqenais, Jillian Anderson, Rikki Schick

