

# Soil Fertility for Saskatchewan Irrigation

### Irrigation Crop Diversification Corporation Saskatoon Inn January 11, 2013

Gary Kruger P Ag CCA Irrigation Agrologist





# Irrigation Crop Diversification Corportion

- Statute I-14.1 Irrigation Act, 1996
- Vision

 Through innovation, to stimulate and service the development and expansion of sustainable irrigation in Saskatchewan







# Irrigation Crop Diversification Objectives

1) To research and demonstrate to producers and irrigation districts profitable agronomic practices for irrigated crops



rrigation Crop Diversification Corpe

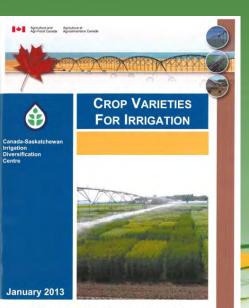
-/000-

ICDC Research and Demonstration Program Report 2012

ICDC - Delivering "value for money R&D" to Saskatchewan irrigate

www.irrigationsaskatchewan.com

- experiments at CSIDC
- demonstrations in grower fields
- Research and Demonstration Report
- Agronomics and Economics








# **Irrigation Crop Diversification Corporation**

2) To develop or assist in developing varieties of crops suitable for irrigated conditions



- varietal testing research at CSIDC - Varieties for Irrigation publication





Saskatchewan Ministry of

### Irrigation Crop Agriculture **Diversification Corporation**

To provide land, facilities and technical support to 3) researchers to conduct research into irrigation technology, cropping systems, and soil and water conservation measures under irrigation and to provide information to district consumers, irrigation districts and the public



#### ICDC board report 2011 nual Irrigation Conference held in Moose J

In this issue

li for 2012 pro

Partner at CSIDC

**Reporting at Irrigation District Annual Meeting** The Irrigator publication ICDC Research and Demonstration Report







### **Irrigation Crop Diversification Corporation**

4) To co-operate with the Minister in promoting and developing sustainable irrigation in Saskatchewan Demonstrations at CSIDC – field day ICDC Agronomics and Economics budget book







## **Irrigation Crop Diversification Corporation**

- Board of Directors
  - Elected by District Delegates at ICDC annual meeting on prorated basis of irrigated acres
  - represent the four development areas and non-district developments
  - Rep from SK Irrigation Projects Association and SK Ministry of Agriculture







# Ministry Support Staff

- Gerry Gross Manager
- Sarah Sommerfeld Forage Specialist
- Rory Cranston Crop Specialist
- Gary Kruger SW Projects Agronomist



### ICDC Staff

- Garry Hnatowich Research Agronomist
   Assisted by CSIDC field staff
- Harvey Joel Research Technician
- Desiree Ackerman Administration and Accounting



# Program Overview

- Stand Termination/Tillage Demo
  - Val Marie, Rush Lake, Miry Creek ID
- Annual Forage Cereals Demo Val Marie
- Soil Fertility Demo on Forages
  - Fall Banded PK Zn– Alfalfa Yield (Miry Creek ID)
  - Spring Band/Broadcast PK Alfalfa Yield (Chesterfield ID)
  - Fall Broadcast PKS Alfalfa Yield(Consul)
  - Soil Test vs Traditional Practice on Barley (Eastend)





# Program Overview

- Irrigated Salt Tolerant Alfalfa Variety Demo (CSIDC)
- Liebig's Law Fertility Demo on Wheat nutrient seed treatment & N + K (Luck Lake ID)
- Liquid & Granular Phosphate Demo on Canola (SSRID)
- Foliar Copper for Ergot Control on Spring Wheat (SSRID)
- N rate for Oats on Alfalfa Breaking (CSIDC)
- Irrigation Response of Lentil (CSIDC)





### Southwest Irrigation Districts





# Gravity Irrigation and Forages





Photo credit: John Linsley



**PK** Fertilization of Established Alfalfa **Chesterfield** Irrigation District **Bill Coventry - Mantario**  Treatments 1) Control 4) K Band 5) PK Broadcast 2) P Broadcast 3) P Band 6) PK Band

### Fertilizer application – May 2, 2011







### Chesterfield Irrigation District – Soil Test Results

|              |                                         |                       |       |                | _                      |                                  |                                          |                                |                  |                             | NEUTRA  | LAMMO      | NIUM ACETA    | TE (EXCHANGE       | EABLE)          |          |            |                               |             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|-----------------------------------------|-----------------------|-------|----------------|------------------------|----------------------------------|------------------------------------------|--------------------------------|------------------|-----------------------------|---------|------------|---------------|--------------------|-----------------|----------|------------|-------------------------------|-------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grower<br>ID | 100 B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | AMPLE<br>TIFICATIC    | N     | ORG,<br>MAT    |                        |                                  | PHO:                                     | SPHOR                          | US               | POTA                        | ASSIUM  | I MAG      | NESIUM        | CALCIUM            | SODIUM          |          | рН         | CATION<br>EXCHANG<br>CAPACITY | E           | ERCENT<br>SATURA<br>(COMPU | TION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                         |                       |       |                |                        | P <sub>1</sub><br>WEAK BR<br>1:7 | AY STR<br>BF<br>1                        | 2<br>IONG<br>IAY<br>I7         |                  | 7                           |         | 0.000      | Mg            | Ca                 | Na<br>oom D ATE | рH       | BUFFER     |                               | %<br>K<br>A | % %<br>Mg Ca               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                         | 280085                | FL    | 3.3            | M                      | ppm RA                           |                                          | M                              | ppm R/           | ATE ppm<br>L 92             | RÂTE    | ppm<br>478 | -             | ppm RATE<br>2940 H | 26              | 8.1      |            | 19.0                          | 1           | 21.0 77                    | 2 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | 4                                       | 200005                |       | 5.5            | 171                    | 4 V                              | L 21                                     | IVI                            | 0                | L 92                        | -       | 470        |               | TPA EXTRACTI       |                 | 0.1      |            | 19.0                          | 1.2         | . 21.9 11                  | .2 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Surfac                                  | e                     |       | TRATI<br>Sub 1 | E-N (FIA)              | Su                               | n 2                                      | Total                          | SULFL            | JR ZII<br>Z                 | VC<br>n | MAN        | IGANESE<br>Mn |                    | COPF            | 1000     | BOROI<br>B | LIME                          |             | SOLUE<br>SALT              | and the second sec |
| -            | lbs/A                                   |                       | -     |                | depth p                | opm Ibs                          |                                          | - 1. mil                       | ppm / D          | TE ppm                      | DATE    | P          | ATE           | ppm RA             | TE ppm F        | RATE     | -A-        | RATE                          |             | 1:1<br>nmhos/  <br>cm      | RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6            | 11                                      | 0-6                   |       |                |                        |                                  |                                          | 11                             | 10               | L 1.7                       | M       | 3          | VL            | 36 V               | H 1.1           | М        | 0.6 l      |                               |             | 0.3                        | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                         | SO                    | IL FI | ERT            | ILITY                  | RECC                             | MME                                      | NDAT                           | IONS (           | POUND                       | S PE    | RA         | CRE) b        | y MIDW             | EST LA          | BOR      | ATOR       | RIES                          |             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AMPLE        |                                         |                       | CRO   | P              |                        | YIELD                            |                                          | soil A                         | MENDM            | ENTS                        |         | N          | P205          | K <sub>2</sub> O   | Mg              | S        | Zn         | Mn                            | Fe          | Cu                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ID           |                                         | INTENDE               | )     | PR             | EVIOUS                 | GOAL                             | LIME<br>LBS/A<br>of<br>CaCO <sub>3</sub> | LIME<br>TONS/A<br>90 %<br>ECCE | GYPSUM<br>TONS/A | ELEMENTA<br>SULFUR<br>LBS/A | AL NITR | OGEN       | PHOSPHA       | TE POTASH          | MAGNESIUI       | M SULFU  | JR ZINC    | MANGANESE                     | IRON        | I COPPER                   | BORON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 280085       |                                         | LFALFA -<br>RLEY FEEI |       |                | NLFA - to<br>NLFA - to | 1                                |                                          |                                |                  |                             |         | -<br>70    | 75<br>45      | 180<br>40          | 1               | 14<br>12 | 0.7<br>0.7 | 2.8<br>2.5                    | 1 1         | -                          | 1.2<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



### PK Fertilization of Established Alfalfa Chesterfield Irrigation District

| Treatment    | Nutrient<br>Applied<br>(lb/ac) | Blend<br>Analysis | Rate of<br>Fertilizer<br>(lb/ac) | 2011 1 <sup>st</sup> Cut<br>Hay Yield<br>(ton/ac) | 2012 1 <sup>st</sup> Cut<br>Hay Yield<br>(ton/ac) |
|--------------|--------------------------------|-------------------|----------------------------------|---------------------------------------------------|---------------------------------------------------|
| Control      | None                           | None              | None                             | 2.49 ton/ac                                       | 2.91 ton/ac                                       |
| P Broadcast  | 16-75-0-0                      | 11-52-0           | 144 lb/ac                        | 3.48 ton/ac                                       | 2.58 ton/ac                                       |
| P Band       | 16-75-0-0                      | 11-52-0           | 144 lb/ac                        | 3.29 ton/ac                                       | 2.71 ton/ac                                       |
| K Band       | 16-0-75-0                      | 10-0-47-0         | 160 lb/ac                        | 3.40 ton/ac                                       | 2.10 ton/ac                                       |
| PK Broadcast | 16-75-75-0                     | 6-28-28-0         | 270 lb/ac                        | 3.08 ton/ac                                       | 2.75 ton/ac                                       |
| PK Band      | 16-75-75-0                     | 6-28-28-0         | 270 lb/ac                        | 3.33 ton/ac                                       | 3.03 ton/ac                                       |







PK Fertilization of
 Established Alfalfa
 Chesterfield Irrigation District
 2012 1<sup>st</sup> Cut Yields

Broadcast P vs
 2.58 t/ac

Broadcast PK vs
 2.75 t/ac

Band P 2.71 t/ac Band PK 3.03 t/ac

• Banding advantage = 0.15 to 0.25 ton/ac





PK Fertilization of Established Alfalfa Chesterfield Irrigation District 2012 Pre Bloom Alfalfa Plant Tissue

| Treatment    | N<br>(%) | P<br>(%) | K<br>(%) | S<br>(%)           | Zn<br>(ug/g) | Mn<br>(ug/g) | B<br>(ug/g) |
|--------------|----------|----------|----------|--------------------|--------------|--------------|-------------|
| Control      | 4.4      | 0.34     | 2.3      | 0.33               | 37           | 24           | 31          |
| P Band       | 4.2      | 0.32     | 1.8      | 0.29               | 29           | 19公          | 25 🛣        |
| P Broadcast  | 4.0      | 0.32     | 1.82     | ۲0.30              | 27           | 19☆          | 25 🛱        |
| PK Band      | 3.6      | 0.28     | 1.97     | ₹0.23 <sup>7</sup> | ₹ 30         | 32           | 16 🛣        |
| PK Broadcast | 4.4      | 0.32     | 2.0      | 0.31               | 27           | 21☆          | 28 🛣        |
| K Band       | 4.3      | 0.34     | 2.5      | 0.33               | 34           | 22           | 32          |
| Alfalfa      | 2.5      | 0.25     | 2.0      | 0.25               | 20           | 25           | 30          |
| Threshold    |          | 4.4      | 4 X 6.25 | = 27.5%            | Protein      | -//10        | N_          |

Irrigation Crop Diversification Corporation

-16



### Manganese

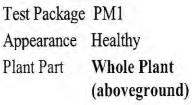


Photo credit: Sarah Sommerfeld

- Symptoms occurred on sandy loam soil with high pH (8.1)
- High pH enhanced in 2012 by above average rainfall
- Low soil test at Miry Creek and Chesterfield
- Low Mn plant tissue test at Chesterfield



Irrigation Crop Diversification Corporation




### Chesterfield June 1 Alfalfa Plant Tissue Sample

Cu

| Date Received   | 07-Jun-12 |
|-----------------|-----------|
| Plant Sample ID | 106165    |
| Crop            | Alfalfa   |
| Variety         |           |

#### PLANT NUTRIENT LEVELS



Date Sampled 01-Jun-12 Growth Stage Vegetative

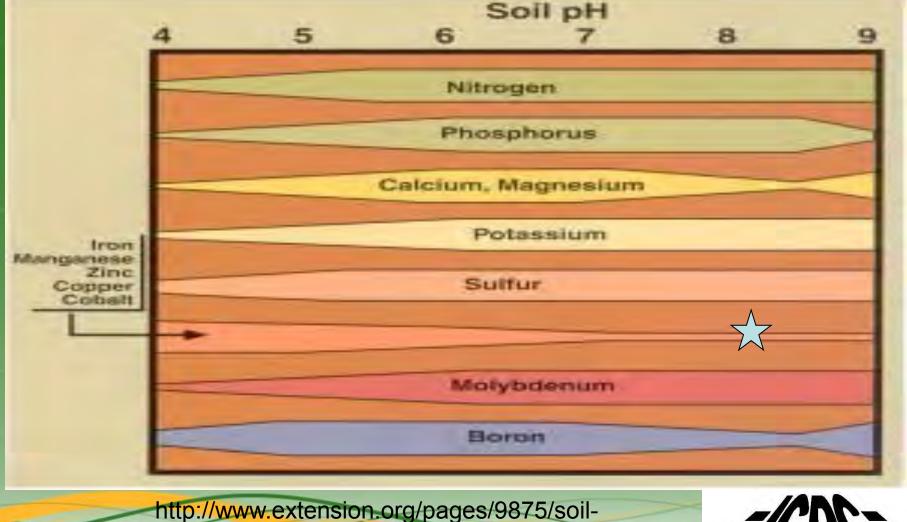
Mn

Fe

٨

Zn

B


| Sufficient          |       |     |       |       |       |       |       |       |       |       |      |       |
|---------------------|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|
| Marginal Deficient  |       |     |       |       |       |       |       |       |       |       |      |       |
|                     | N     | NO3 | Р     | К     | S     | Ca    | Mg    | Cu    | Fe    | Mn    | Zn   | В     |
|                     | %     | ppm | %     | %     | %     | %     | %     | ppm   | ppm   | ppm   | ppm  | ppm   |
|                     | 4.770 |     | 0.349 | 2.183 | 0.272 | 1.515 | 0.323 | 10.54 | 122.8 | 18.08 | 33.9 | 17.81 |
| Sufficeint<br>Above | 4.5   |     | 0.25  | 2     | 0.25  | 0.5   | 0.3   | 3     | 45    | 25    | 20   | 30    |
| Marginal<br>Above   | 4     |     | 0.2   | 1.5   | 0.2   | 0.25  | 0.2   | 2.5   | 40    | 20    | 15   | 20    |

#### NUTRIENT RECOMMENDATION RATES (lb actual/ac)

| Nutrient | Ν     | $P_{2}O_{5}$ | K <sub>2</sub> O | S     | Ca    | Mg    | Cu    | Fe    | Mn          | Zn    | В          |
|----------|-------|--------------|------------------|-------|-------|-------|-------|-------|-------------|-------|------------|
|          | 0 - 0 | 0 - 0        | 0 - 0            | 0 - 0 | 0 - 0 | 0 - 0 | 0 - 0 | 0 - 0 | 0.15 - 0.45 | 0 - 0 | 0.3 - 0.35 |



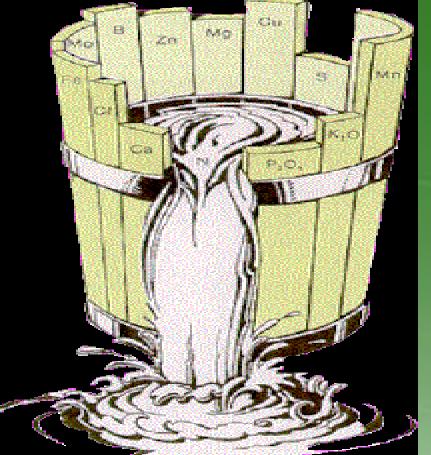
### Soil pH and **Nutrient Availability**



ph-and-nutrient-availability






### Manganese

- Manganese deficiency
  - root rot noted when symptoms were visible
  - damage to alfalfa plant density already done
  - contributed to stand decline in alfalfa
  - yellowing symptoms self corrected when rains stopped and soils dried out
  - one possible mechanism for decline of alfalfa as stands age





### Liebig's Law of the Minimum



- The yield potential of a crop is like a barrel with staves (nutrients) of unequal length.
- The capacity of the barrel is limited by the length of the shortest stave and can only be increased by lengthening that stave.
- When that stave is lengthened, another stave becomes the limiting factor.

http://www.microsoil.com/ liebigs\_law\_of\_the\_minimum.htm





### Southwest Irrigation Districts

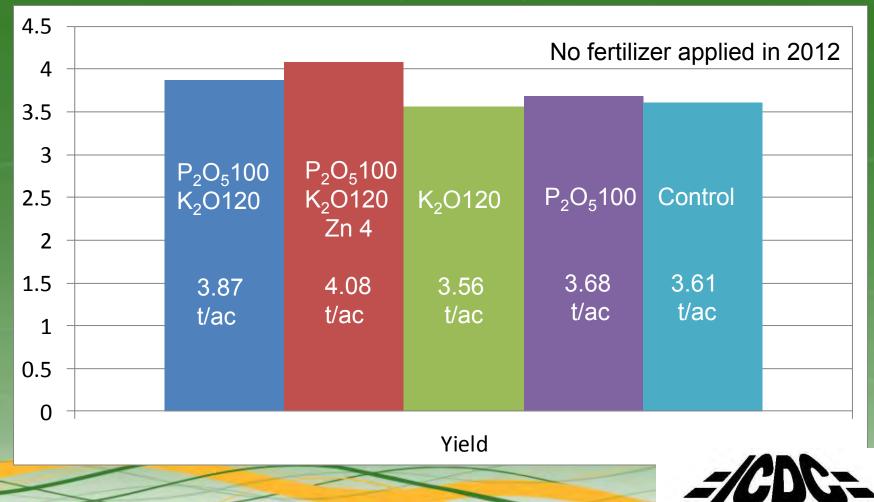




### Soil Analysis - Plot 13 at Miry Creek Fall 2010

|                    |                    |            |        |       |           |                                 |                |                     |              |                             |                | NEUTF | AL AMM | ONIUM ACI   | ETATE  | (EXCHA      | ANGEA   | BLE)         |             |      |     |                          |             | _          |                  |             | _       |
|--------------------|--------------------|------------|--------|-------|-----------|---------------------------------|----------------|---------------------|--------------|-----------------------------|----------------|-------|--------|-------------|--------|-------------|---------|--------------|-------------|------|-----|--------------------------|-------------|------------|------------------|-------------|---------|
| SAMPI<br>IDENTIFIC | Sector Contraction | Server and | RGANI  | 1.00  |           |                                 | PHO            | SPHOR               | RUS          |                             | POT,           | ASSIU | MMAC   | GNESIU      | M C.   | ALCIU       | M       | SODIUM       | M           | рН   |     | CATIC<br>EXCHAN<br>CAPAC | IGE         | SA         | CENT B<br>TURATI | ION         |         |
|                    |                    | PERCE      | L.O.I. | RATE  | WEAK<br>1 | P <sub>1</sub><br>K BRAY<br>1:7 | STR<br>BR<br>1 | RONG<br>IRAY<br>1:7 | $\mathbb{X}$ | BONATI<br>P<br>ISEN<br>RATE | 2              |       | E ppr  | Mg<br>m RAT | Epi    | Ca<br>pm RA | ATE     | Na<br>ppm RA | pł<br>TE 1: |      | FER | C.E.C<br>meq/10          | ; _ {\<br>\ | 6 %<br>K M |                  | %<br>H      | %<br>Na |
| 28008              |                    | 2.2        |        | L     | 8         | L                               | 44             | Н                   | 12           | м                           | 322            |       | 106    | -           | 44     | 476         | H       | 183 H        | 1 8.        | 5    |     | 32.8                     | 2           | 5 27       | .0 68.1          |             | 2.4     |
|                    |                    |            |        |       |           |                                 |                |                     |              | 7                           | X              | Z     | Z      |             | л<br>И | 7<br>DTI    | rpa Ext | raction      |             |      |     |                          |             |            |                  |             |         |
|                    |                    | 1          | NITR/  | ATE-N | N (FIA'   | 5                               |                |                     |              |                             | FUR            | ZIN   |        | MANG        |        | SE          |         | RON          | 1 2 2 0     | PPER |     | RON                      | EXCE        | CO 144 B.  |                  | UBLE<br>LTS |         |
| Surfac             | ice                | T          | Sub    | 1 د   |           |                                 | Sub 2          | 2                   | Total        |                             | S              | 2     | n      |             | Mn     |             |         | Fe           |             | Cu   |     | В                        | RAT         |            |                  | 1:1         | 1.1     |
| ppm lbs/A          | A depth<br>IN      | h ppm      | lbs//  |       | epth p    | ppm                             | lbs/A          | depth<br>IN         | lbs/A        | 1                           | and the second | ppm I | RATE   | ppm         | RA     | TE          | ppm     | RATE         | ppm         | RATE | ppm | RATE                     |             |            | mmhos/<br>cm     | RA          | ATE     |
| 17 31<br>f         | 0-6                | 1          |        | T     | 1         |                                 |                |                     | 31           | 12                          | L              | 1.0   | L      | 2           | V      | /L          | 15      | м            | 2.3         | VH   | 1.9 | VH                       | М           |            | 0.6              |             | L       |

|       |                                   | SC       | IL FE   | RTIL | TY R                           | ECOM    | MENDAT                       | IONS (P  | OUNDS    | PER /          | ACRE)    |         | -          |                 |            |              |      |
|-------|-----------------------------------|----------|---------|------|--------------------------------|---------|------------------------------|----------|----------|----------------|----------|---------|------------|-----------------|------------|--------------|------|
| MPLE  | CROP                              | 50       | YIELD   |      | A line                         | ACLIDAR | ENIT                         | N        | P.O.     | K <sub>0</sub> | Ma       | SIN FUR | Zn         | Mn<br>MANGANESE | Fe<br>IRON | Cu<br>COPPER | BORO |
| ID    | INTENDED                          | PREVIOUS |         | of   | LIME<br>TONS/A<br>90 %<br>ECCE | TONS/A  | ELEMENTAL<br>SULFUR<br>LBS/A | NITROGEN |          | FUIASh         | IN COLOR |         |            |                 |            |              |      |
| 30081 | ALFALFA - ton<br>WHEAT SPRING -bu | UNKNOWN  | 3<br>50 |      |                                |         | 20<br>20                     | <br>85   | 40<br>25 | 10             | -        | 9<br>5  | 1.8<br>1.3 | 2.3<br>1.8      | T (I)      | -            | 1    |




### **Demonstration Layout on Plot 13 at Miry Creek**

| Fertilizer Banded<br>November 6, 2010 | West Control                                                 | 12-15 in. H20 =<br>50-75 lb S/ac/yr |
|---------------------------------------|--------------------------------------------------------------|-------------------------------------|
|                                       | 100 lb P <sub>2</sub> O <sub>5</sub>                         |                                     |
|                                       | 120 lb K <sub>2</sub> O                                      |                                     |
| 100 lb F                              | P <sub>2</sub> O <sub>5</sub> + 120 lb K <sub>2</sub> O + 4  | lb Zn                               |
| 10                                    | 0 lb P <sub>2</sub> O <sub>5</sub> + 120 lb K <sub>2</sub> O | C                                   |
|                                       | East Control                                                 |                                     |
|                                       |                                                              |                                     |



### Miry Creek 2012 2-cut Alfalfa Yield (ton/ac)





### Ministry of Agriculture Miry Creek 2012 Plant Tissue and Yield Results

| Treatment   | Cost<br>(\$/ac) | N<br>(%) | P<br>(%) | K<br>(%) | Mn<br>(%) | Zn<br>(%) | Yield<br>(ton/ac) | Relative<br>Yield |
|-------------|-----------------|----------|----------|----------|-----------|-----------|-------------------|-------------------|
| P100K120    | \$130           | 4.25     | 0.37     | 2.4      | 32        | 20        | 3.87              | 1.07              |
| P100K120Zn4 | \$155           | 4.36     | 0.38     | 2.3      | 34        | 28        | 4.08              | 1.13              |
| P100        | \$70            | 4.26     | 0.35     | 2.2      | 34        | 21        | 3.68              | 1.02              |
| K120        | \$60            | 3.45     | 0.32     | 2.3      | 29        | 24        | 3.56              | 0.99              |
| Control*    |                 | 4.20     | 0.37     | 2.3      | 35        | 25        | 3.61              |                   |
| Adequate    |                 | 4.00     | 0.25     | 2.0      | 25        | 20        |                   |                   |

Soil Sample suggested P, K, S, Mn, and Zn required – Only P, K, and Zn applied – S from irrigation water Plant Tissue suggested P, K, S, Mn were adequate for first cut







# Miry Creek 2012

- Goal demonstrate balanced fertilization of both P and K
  - Did show response to Zn on a flood irrigated land levelled field
  - Response to P but little benefit from K



## N rate for Irrigated Oats on Terminated Alfalfa Stubble

- High rates of N release under good moisture conditions
- Two varieties Triactor and CDC Haymaker
- N rates 0, 25, 50, 75, 100 and 125 kg/ha
- Seeding date May 31, 2012



#### Saskatchewan Ministry of Agriculture On Terminated Alfalfa Stubble

| Oat Variety    | Grain Yield (bu/ac) | Forage Yield (t/ac) |
|----------------|---------------------|---------------------|
| Triactor       | 114.8               | 6.23                |
| CDC Haymaker   | 120.2               | 6.04                |
| N rate (kg/ha) | Grain Yield (bu/ac) | Forage Yield (t/ac) |
| 0 N            | 126.7 a             | 5.48                |
| 25 N           | 120.7 ab            | 6.47                |
| 50 N           | 121.9 ab            | 6.03                |
| 75 N           | 113.6 bc            | 6.40                |
| 100 N          | 113.9 bc            | 6.35                |
| 125 N          | 108.3 c             | 6.08                |
| LSD (0.05)     | 11.1                | NS                  |







### Sulphur

- Rain leaches S in sandy loam soil
- Roots of annuals need to reach deeper soil to access sufficient S
- Suspected for alfalfa at Consul, Miry Creek and Chesterfield based on soil test and based on plant tissue in 2011 at Chesterfield



http://landresources.montana.edu/ soilfertility/sdeficiency.html





### P, K, B, & S Fertilization @ Consul

| Treatment        | Product<br>Applied (Ib/ac) | N<br>(Ib/ac) | P <sub>2</sub> 0 <sub>5</sub><br>(Ib/ac) | K <sub>2</sub> 0<br>(Ib/ac) | S<br>(Ib/ac) | Yield<br>(ton/ac) |
|------------------|----------------------------|--------------|------------------------------------------|-----------------------------|--------------|-------------------|
| P Broadcast      | 17-34-0<br>@ 173 lb/ac     | 29           | 75                                       | 0                           | 0            | 2.37              |
| PK<br>Broadcast  | 10-25-25-0<br>@ 298 lb/ac  | 29           | 75                                       | 75                          | 0            | 2.69              |
| PKS<br>Broadcast | 9-23-22-4<br>@ 332 lb/ac   | 29           | 75                                       | 75                          | 15           | 2.48              |
| PS<br>Broadcast  | 14-36-0-7<br>@ 207 lb/ac   | 29           | 75                                       | 0                           | 15           | 2.76              |







Ministry of Agriculture

### P, K, B, & S Saskatchewan Fertilization @ Consul

### Plant Tissue Analysis - Consul

| Treatment        | N<br>(%) | P<br>(%) | K<br>(%) | S<br>(%) | Cu<br>(ppm) | Fe<br>(ppm) | Mn<br>(ppm) | Zn<br>(ppm) | B<br>(ppm) |
|------------------|----------|----------|----------|----------|-------------|-------------|-------------|-------------|------------|
| P Broadcast      | 4.0      | 0.33     | 2.7      | 0.34     | 8           | 99          | 40          | 31          | 37         |
| PK<br>Broadcast  | 4.0      | 0.34     | 2.9      | 0.38     | 9           | 92          | 35          | 32          | 46         |
| PKS<br>Broadcast | 4.2      | 0.35     | 3.0      | 0.34     | 9           | 67          | 31          | 32          | 42         |
| PS<br>Broadcast  | 4.2      | 0.32     | 2.9      | 0.36     | 9           | 68          | 30          | 32          | 43         |
| Threshold        | 4.5      | 0.25     | 2.0      | 0.30     | 8           | 50          | 20          | 20          | 30         |







# Other projects

- Fungicide on irrigated crops (Rory)
  - White mold control on dry bean
  - Pasmo control on flax
  - Fusarium and tan spot control on wheat, durum and winter wheat
- Canola seeding rate trial (Garry H)
- Durum and soft wheat seeding rate trial
- Evaluation of pasture blends (Sarah)
- Forage biomass for ethanol production

Corn varieties for silage and grazing



### Conclusion

- Liebig's Law applies to forages too!!!
- Soil and plant tissue testing are important tools for managing forage production
- The obvious solution is often not the complete solution. All growth factors need to be considered to provide the best solution!!





Acknowledgement

- Crop Production Services Outlook
  blending services
  - G-Mac's Ag Team Leader and Eatonia - fertilizer application
- Viterra fertilizer and blending Shaunavon
- Dept of Plant Science, U of S oat seed
- Salford Farm Machinery Ltd.- tillage
- Nexus Ag Cu and Zn fertilizer
- United Agri Products Mn fertilizer
- ADOPT Agricultural Demonstration of Practices and Technology



### **Our Cooperators**

- Bill Coventry Mantario
- Greg Oldhaver Cabri
- Russ Swihart Consul
- Scott Sanderson Consul
- Larry Verpy Eastend
- Andy Perrault Ponteix
- Pat Hayes Val Marie

