2021 Report

for the

Saskatchewan Ministry of Agriculture's

Agricultural Demonstration of Practices & Technologies (ADOPT) Program

Project Title: Influence of Potassium Fertilizer on Yield and Seed Quality of Malt Barley and Spring Wheat (Project #20200479)

ICDC Principal Investigators: Garry Hnatowich & Gursahib Singh

Irrigation Crop Diversification Centre, Outlook, SK

IHARF Project Manager: Chris Holzapfel

Correspondence: <u>cholzapfel@iharf.ca</u> or (306) 695-7761

Project Identification

- 1. Project Title: Influence of Potassium Fertilizer on Yield and Seed Quality of Malt Barley and Spring Wheat
- 2. Project Number: 20200479
- 3. Producer Group Sponsoring the Project: Indian Head Agricultural Research Foundation (IIHARF)

4. Project Location(s):

Garry Hnatowich & Gursahib Singh, Research Directors (Principle Investigators) Irrigation Crop Diversification Corp. (ICDC) PO Box 1460, Outlook, SK SOL 2N0 Mobile: 639-317-4705; Office 306-867-5405; Email: <u>gursahib.icdc@sasktel.net</u>

Chris Holzapfel, Research Manager Indian Head Agricultural Research Foundation (IHARF) PO Box 156, Indian Head, SK, SOG 2K0 Mobile: 306-695-7761; Office: 306-695-4200; Email: <u>cholzapfel@iharf.ca</u>

Bryan Nybo, Manager Wheatland Conservation Area (WCA) PO Box 2015, Swift Current, SK, S9H 4M7 Phone: 306-773-4775; Email: <u>wcanybo@sasktel.net</u>

Robin Lokken, Manager Conservation Learning Center (CLC) PO Box 1903 Stn Main, Prince Albert, SK S6V 6J9 Phone: 306-960-1834

Mike Hall, Research Coordinator East Central Research Foundation (ECRF) PO Box 1939, Yorkton, SK, S3N 3X3 Phone: 306-621-6032; Email: m.hall@parklandcollege.sk.ca

Lana Shaw, Research Manager South East Research Farm (SERF) PO Box 129, Redvers, SK, SOC 2H0 Phone: 306-452-7253; Email: <u>lshaw.serf@gmail.com</u>

5. Project start and end dates (month & year): March 2, 2021 – February 15, 2022

6. Project contact person & contact details (IHARF):

Chris Holzapfel, MSc, PAg Research Manager Indian Head Agricultural Research Foundation PO Box 156, Indian Head, SK, SOG 2KO Email: <u>cholzapfel@iharf.ca</u> Mobile: 306-695-7761

7. Project objectives:

The objectives of this project are to conduct trials with typical soil testing potassium (K) levels to:

- 1. Evaluate the effects of K fertilizer rate and placement on yield of malt barley and spring wheat;
- 2. Evaluate the influence of K fertilization on seed quality characteristics, and to;
- 3. Assess the impact of K fertilization on crop lodging.

8. Project Rationale:

Dozens of potassium (K) fertilizer field trials have been conducted in Saskatchewan since the 1960's, however, the majority failed to provide a grain yield response. In Saskatchewan, soils tend to have abundant soil available K, and therefore its application in cereals is typically restricted to the Grey soil zone or very light textured soils. Yield responses tend to be limited when K is applied to soils deemed adequate in soil test K (Karamanos et al., 2013; Holzapfel, C, 2016). However, yield responses can and have occurred. A summary of 124 barley trials conducted by Westco from 1989 to 1998 suggested that the probability of observing a yield response in barley to seed-placed K could be expected in 2 of 5 years. In wheat (52 sites) trials the probability of observing a yield response to seed-placed K was 1 year in 5 (data summary presentation in possession of G. Hnatowich). In yield responsive trials, the influence of K fertilizer additions may have been an indirect response to disease suppression and an overall healthier plant stand. Although yield responses can be variable on typical soils in western Canada, K fertilization may affect other agronomic and market-enhancing attributes.

Vasey & Soper (1966) found that K fertilization increased the plumpness of malting barley in soils high in available K. Similarly, low levels of K fertilization elevated the percentage of plump kernels in malt barley grown on soils testing from 248 to 1060 kg K/ha in North Dakota (Zubriski et.al., 1970). As 2-row malt barley varieties require \geq 80% plump kernels to meet grading criteria, the potential to increase plumpness with K fertilizer additions is highly desirable and would provide a direct monetary benefit to producers. There may be other agronomic factors that respond to K fertilization (i.e., higher test weight in spring wheat) that could benefit producers and increase the profitability of either malt barley or spring wheat.

Lodging is a concern for high yielding varieties, particularly under irrigation. Lodging reduces yield, influences seed quality, and can create logistical challenges at harvest. Increased stem strength and enhanced lodging resistance is attributed to sufficient K availability (Yuan et. al., 2010). However, McKenzie et. al. (2005) conducted field trials in southern Alberta and failed to relate barley lodging resistance to K fertilization as lodging only occurred at one of fourteen sites over a three-year period. In high yielding or irrigated environments where lodging is more prevalent, additional K fertilizer supplementation might be beneficial.

9. Methodology:

Small plot trials were established at Indian Head (IHARF), Yorkton (ECRF), Redvers (SERF), Prince Albert (CLC), Swift Current (WCA) and Outlook (ICDC). Seven potassium (K) fertilizer treatments were established in a Randomized Complete Block Design with four replications. Both spring wheat and malt barley were evaluated as separate and individual trials. Plot size varied in accordance to seeding equipment at each site. Wheat variety selection was on a site-by-site preference to a regionally suitable variety. However, AAC Synergy or CDC Churchill were specified as preferred, high yielding malt varieties. K fertilizer rates and positional placement were:

- 1. 0 kg K₂O/ha seed placed
- 2. 10 kg K₂O/ha seed placed
- 3. 20 kg K₂O/ha seed placed
- 4. 30 kg K₂O/ha seed placed
- 5. $10 \text{ kg K}_2\text{O/ha} \text{side banded}$
- 6. 20 kg K_2O/ha side banded
- 7. $30 \text{ kg K}_2\text{O/ha} \text{side banded}$
- 8. 20 kg K_2O/ha seed placed + 40 kg K_2O/ha side banded

Prior to seeding all sites obtained soil samples for nutrient analyses. Samples were sampled and submitted to Western Ag according to their sampling and shipping protocols for ion exchange resin membrane available K. Additionally, sites also obtained a conventional soil test as per standard testing procedures at each AgriArm location. Conventional soil testing measured ammonium acetate exchangeable K. As wheat and barley trials were adjacent, a single composite soil sample was obtained from the trialing area. Soil test results and recommendations are shown in Table 1. In general, Cropcaster recommendations were higher than conventional soil test procedures in the study. Operational dates and inputs applied at each site are shown in Table 2.

	Western Ag P	RS Cropcaster	Agv	/ise
Trial	Soil K ₂ O kg/ha	Fertilizer K ₂ O	Soil K ₂ O kg/ha	Fertilizer K2O
Location		Recommendation		Recommendation
		kg/ha		kg/ha
ICDC	106.4	0	426	11
ECRF	58.2	29	764	11
SERF	29.8 Wheat	40 Wheat	364 Wheat	Not provided
	27.2 Barley	35 Barley	312 Barley	
IHARF	26.9	56	1316	11
WCA	260.3	0	834	11
CLC	121.2	28 Wheat,	490	10
		67 Barley		

Table 1.	Soil analy	ysis results,	2021
----------	------------	---------------	------

	Location						
Activity	ICDC	ECRF	SERF	IHARF	WCA	CLC	
Pre-seed	May 7	nono		May 11	May 3	nono	
Herbicide	glyphosate	none		glyphosate	glyphosate	none	
Variety	Wheat – AAC Wheatland VB Barley – AAC Synergy	Wheat – AAC Brandon Barley – AAC Synergy	Wheat – AAC Brandon Barley – AAC Connect	Wheat – CDC Alida VB Barley – AAC Synergy	Wheat - Adamant Barley – AAC Synergy	Wheat – AAC Cameron VB Barley – CDC Churchill	
Seeding	May 14	Wheat – May 7 Barley – May 13	May 6	May 6	May 11	May 27	
N-P-S (kg	Wheat	Wheat	Wheat	Wheat 145-	Wheat 133-	Wheat	
nutrient/ha	135-25-0	125-30-0	65-25-0	40-0	30-0	126-39-0	
) Fertilizer	Barley	Barley	Barley	Barley	Barley	Barley	
, rerenzer	135-25-0	100-30-0	65-25-0	125-40-0	105-30-0	98-45-0	
In-crop Herbicide	June 18 Buctril M /Simplicity	June 7 Prestige June 16 Axial		Wheat June 7 Prestige/Sim plicity Barley June 16 Prestige /Axial	June 7 Buctril M / Achieve	June 15 Dyvel	
In-crop Fungicide	none	Wheat July 9 Prosaro XTR Barley June 28 Trivepro	none	Wheat July 6 Prosaro XTR Barley July 1 Trivepro	none	July 13 Folicur	
		Wheat –	Wheat –	Wheat –	Wheat –	Wheat –	
Harvest	Aug 26	Aug 13	Aug 14	Aug 30	Aug 31	Sept 22	
		Barley –	Barley –	Barley –	Barley –	Barley –	
		Aug 27	Aug 10	Aug 15	Aug 30	Sept 9	

Table 2. Operational dates and inputs used in wheat/barley, 2021.

10. Results

Growing Season Weather

Mean monthly temperatures and precipitation amounts for 6 locations are listed in Tables 3 and 4. The 2021 growing season was a historic event with temperatures higher than long-term averages and seasonal precipitation much below typical precipitation levels at most locations. The Outlook site received only 49.6% of historic precipitation but was irrigated. Irrigation applied at Outlook consisted of 15 mm in May, 110 mm in June, 110 mm in July and no applications in August, total irrigation applied was 235 mm. All other remaining trial locations were dryland production and adversely influenced by heat and or drought, particularly at Yorkton, Swift Current and Prince Albert where only 54%, 75% and 73% historic precipitation was received, respectively. Indian Head and

Redvers received precipitation close to long-term averages.

Location	Year	Мау	June	July	August	Avg. / Total
			Мес	an Temperatu	ıre (°C)	
ICDC Outlook	2021	10.1	18.8	21.6	17.9	17.1
	Long-term	11.3	16.0	18.6	17.8	15.9
ECRF Yorkton	2021	8.9	19.1	21.0	17.3	16.5
	Long-term	10.4	15.5	17.9	17.1	15.2
SERF Redvers	2021	10.0	18.7	20.8	17.5	16.8
	Long-term	11.1	16.2	18.7	18.0	16.0
IHARF Indian Head	2021	9.0	17.7	20.3	17.1	16.0
	Long-term	10.8	15.8	18.2	17.4	15.6
WCA Swift Current	2021	9.5	18.4	21.7	18.0	16.9
	Long-term	10.9	15.3	18.2	17.6	15.5
CLC Prince Albert	2021	10.1	18.3	20.3	17.0	16.4
	Long-term	11.4	15.9	18.5	17.1	15.7

Table 3. Mean monthly temperatures at sites for 2021 compared to long-term (30 years) averages.

Location	Year	May	June	July	August	Avg. / Total
			P	recipitation ('mm)	
ICDC Outlook	2021	44.5	10.3	13.8	37.7	106.3
	Long-term	43.2	69.3	57.6	44.2	214.3
ECRF Yorkton	2021	24.6	18.1	35.2	69.7	147.6
	Long-term	51	80	78	62	272
SERF Redvers	2021	41.4	95.2	38.4	72.1	247
	Long-term	60.0	<i>95.2</i>	65.5	46.6	267
IHARF Indian Head	2021	81.6	62.9	51.2	99.4	295.1
	Long-term	51.7	77.4	63.8	51.2	244.1
WCA Swift Current	2021	35.0	29.6	38.9	55.8	159.3
	Long-term	44.1	74.5	51.9	43.2	213.7
CLC Prince Albert	2021	29.8	84.0	9.6	57.0	180.4
	Long-term	40.4	79.6	84.6	42.9	247.5

Table 4. Precipitation received at sites during 2021 compared to long-term (30 years) averages.

Wheat Results

Results gathered for wheat seed yield, quality and other agronomic characteristics from all trial locations are shown in Tables 1 through 7. Potassium fertilization had little or no effect in wheat under the trial conditions. Results from the ECRF and WCA sites had higher than acceptable coefficients of variation with respect to yield. At both locations the high degree of variability within grain yield was attributed to drought conditions. Seed yield at the remaining four trial locations, while acceptable with respect to statistical analysis, where lower than might "normally" be expected. For example, under irrigation at ICDC average yield was 4412 kg/ha (65.6 bu/ac) where expected yields on this field are typically in the 6000-6200 kg/ha range (89.2-92.2 bu/ac) range. Therefore, although irrigated, the adverse environmental conditions experienced unquestionably had a negative influence on wheat growth and development. This probably may also apply to all dryland locations. Therefore, it is not possible to determine if spring wheat is nonresponsive to K fertilizer additions or if the absence of response is due to environmental conditions.

K Placen	nent &						
Rate (kg	/ha)	Yield kg/ha					
Seed	Side band	ICDC	ECRF	SERF	IHARF	WCA	CLC
Control -	0	4436 a	3822 a	3795 a	3965 a	1414 a	3715 a
10		4409 a	3735 a	3578 a	3905 a	1431 a	3246 a
20		4325 a	3312 a	3714 a	3910 a	1428 a	3559 a
30		4344 a	3398 a	3847 a	3956 a	1311 a	3405 a
	10	4413 a	3029 a	3313 a	3917 a	1429 a	3239 a
	20	4362 a	3087 a	3679 a	3931 a	1520 a	3449 a
	30	4522 a	2985 a	3438 a	3949 a	1603 a	3425 a
20	40	4489 a	3049 a	3789 a	3882 a	1543 a	3545 a
	LSD (0.05)	NS	NS	NS	NS	NS	NS
	CV (%)	5.2	21.7	7.7	1.9	15.6	13.5

Table 1. Wheat Grain Yield Response to Fertilizer K Applications. Different letters indicated significant differences between treatments (ANOVA, $P \le 0.05$).

Table 2. Wheat Grain Protein Response to Fertilizer K Applications. Different letters indicated significant differences between treatments (ANOVA, $P \le 0.05$).

K Placen	nent &								
Rate (kg	/ha)			Prote	Protein %				
Seed	Side band	ICDC	ECRF	SERF	IHARF	WCA	CLC		
Control -	0	10.7 a	15.9 a	14.1 a	15.03 ab	17.3 a	ND		
10		10.8 a	16.1 a	14.6 a	15.05 a	17.2 a	ND		
20		10.6 a	16.4 a	14.3 a	14.85 cd	17.1 a	ND		
30		10.8 a	16.1 a	14.6 a	14.95 abc	17.1 a	ND		
	10	10.8 a	16.4 a	14.8 a	14.93 abc	17.3 a	ND		
	20	10.6 a	16.4 a	14.4 a	14.75 de	17.1 a	ND		
	30	10.9 a	16.6 a	15.2 a	14.90 bc	17.0 a	ND		
20	40	10.5 a	16.5 a	14.6 a	14.70 e	17.3 a	ND		
	LSD (0.05)	NS	NS	NS	0.15	NS			
	CV (%)	4.4	2.8	4.5	0.7	1.2			

NS = not significant

K Placen	nent &						
Rate (kg	/ha)	Test Weight (kg/hL)					
Seed	Side band	ICDC	ECRF	SERF	IHARF	WCA	CLC
Control -	· 0	78.5 a	78.6 a	81.0 a	78.1 a	77.9 a	74.9 a
10		78.3 a	78.5 a	81.0 a	78.3 a	78.6 a	75.4 a
20		78.5 a	77.6 a	81.4 a	78.3 a	78.0 a	75.6 a
30		78.9 a	78.7 a	81.4 a	78.3 a	78.0 a	75.5 a
	10	78.4 a	78.5 a	81.5 a	78.3 a	78.0 a	75.4 a
	20	78.0 a	77.9 a	81.8 a	77.9 a	78.5 a	75.3 a
	30	77.9 a	77.6 a	81.5 a	78.2 a	78.2 a	75.2 a
20	40	78.2 a	78.4 a	81.9 a	78.2 a	77.5 a	76.0 a
	LSD (0.05)	NS	NS	NS	NS	NS	NS
	CV (%)	0.8	1.1	0.8	0.4	0.9	1.0

 Table 3. Wheat Grain Test Weight Response to Fertilizer K Applications. Different letters indicated significant differences between treatments (ANOVA, $P \le 0.05$).

Table 4. Wheat Seed Weight Response to Fertilizer K Applications. Different letters indicated significant differences between treatments (ANOVA, $P \le 0.05$).

K Placen	nent &						
Rate (kg	/ha)	Seed Weight (TKW)					
Seed	Side band	ICDC	ECRF	SERF	IHARF	WCA*	CLC
Control ·	- 0	37.2 a	34.4 a	33.3 a	35.1 a	27.38 c	31.0 a
10		37.5 a	31.6 a	32.4 a	35.4 a	29.38 a	32.4 a
20		37.6 a	32.7 a	32.8 a	35.1 a	27.70 bc	31.6 a
30		37.7 a	33.8 a	33.9 a	35.6 a	27.93 abc	30.9 a
	10	38.1 a	33.2 a	32.3 a	35.2 a	27.45 c	31.3 a
	20	37.9 a	32.1 a	33.8 a	35.7 a	29.03 ab	31.0 a
	30	37.2 a	31.6 a	33.4 a	34.8 a	28.45 abc	31.3 a
20	40	37.7 a	33.7 a	33.6 a	34.1 a	27.53 bc	32.7 a
	LSD (0.05)	NS	NS	NS	NS	1.55	NS
	CV (%)	2.4	4.7	3.9	2.7	3.8	4.2

* = significant at P<0.10

NS = not significant

K Placer	nent &						
Rate (kg	/ha)	Days to Mature					
Seed	Side band	ICDC	ECRF	SERF	IHARF	WCA	CLC
Control	- 0	94 a	88 a	87 a	93.0 b	87 a	ND
10		94 a	88 a	88 a	93.3 ab	86 a	ND
20		94 a	87 a	88 a	93.0 b	86 a	ND
30		94 a	88 a	88 a	93.4 a	87 a	ND
	10	94 a	87 a	87 a	93.3 ab	87 a	ND
	20	94 a	87 a	88 a	93.0 b	86 a	ND
	30	94 a	86 a	86 a	93.1 ab	88 a	ND
20	40	94 a	88 a	88 a	93.0 b	87 a	ND
	LSD (0.05)	NS	NS	NS	0.27	NS	
	CV (%)	-	1.4	1.3	0.2	1.2	

Table 5. Wheat Days to Maturity Response to Fertilizer K Applications. Different letters indicated significant differences between treatments (ANOVA, $P \le 0.05$).

ND = not determined

Table 6. Wheat Plant Height Response to Fertilizer K Applications. Different letters indicated
significant differences between treatments (ANOVA, $P \leq 0.05$).

K Placen	nent &						
Rate (kg	/ha)			Plant He	ight (cm)		
Seed	Side band	ICDC	ECRF	SERF	IHARF	WCA	CLC
Control -	· 0	79 a	71 a	76 a	77 a	46 a	ND
10		79 a	71 a	79 a	76 a	44 a	ND
20		79 a	71 a	73 a	75 a	48 a	ND
30		79 a	70 a	77 a	77 a	45 a	ND
	10	81 a	68 a	72 a	74 a	47 a	ND
	20	79 a	67 a	76 a	75 a	46 a	ND
	30	80 a	70 a	76 a	75 a	46 a	ND
20	40	79 a	66 a	73 a	74 a	47 a	ND
	LSD (0.05)	NS	NS	NS	NS	NS	
	CV (%)	2.4	6.5	4.2	2.5	7.4	

NS = not significant

K Placen	nent &								
Rate (kg	/ha)	Lodging (Belgian Scale)							
Seed	Side band	ICDC	ECRF	SERF	IHARF	WCA	CLC		
Control -	· 0	0.2 a	0.5 a	0.2 a	0.2 a	0.2 a	0.2 a		
10		0.2 a	0.2 a	0.2 a	0.2 a	0.2 a	0.2 a		
20		0.2 a	0.2 a	0.2 a	0.2 a	0.2 a	0.2 a		
30		0.2 a	0.2 a	0.2 a	0.2 a	0.2 a	0.2 a		
	10	0.2 a	0.2 a	0.2 a	0.2 a	0.2 a	0.2 a		
	20	0.2 a	0.2 a	0.2 a	0.2 a	0.2 a	0.2 a		
	30	0.2 a	0.2 a	0.2 a	0.2 a	0.2 a	0.2 a		
20	40	0.2 a	0.3 a	0.2 a	0.2 a	0.2 a	0.2 a		
	LSD (0.05)	NS	NS	NS	NS	NS	NS		
	CV (%)	-	38.6	-	71.0	-	-		

Table 7. Wheat Plant Lodging Response to Fertilizer K Applications. Different letters indicated significant differences between treatments (ANOVA, $P \le 0.05$).

Barley

Results gathered for barley seed yield, quality and other agronomic characteristics from all trial locations are shown in Tables 1 through 7. Like wheat, dryland barley trials failed to respond in any meaningful manner to fertilizer K additions. Correspondingly, unfavorable environmental conditions may have adversely influenced findings. However, results for the irrigated barley trial differed. At ICDC all fertilizer K applications resulted in numerically higher grain yield compared to the unfertilized control treatment. Mean yield response to K application was 17%. Seed-placed K additions were highest with the 10 kg K_2O/ha rate and declined with additional seed-placed K rates. This suggests that though the K fertilizer was beneficial, the higher rates may have caused some seedling damage from fertilizer salt, particularly in the dry seed bed conditions prevalent in 2021. Once fertilizer K was positioned away from the seed, in a side band application, all treatment rates produced statistically higher grain yield compared to the control treatment. Protein at ICDC decreased with K fertilizer applications, this is attributed to a dilution effect because of higher yields obtained. Generally, it appears that at ICDC the 10 kg K_2O/ha rate provided optimal barley yield, aligning with the conventional soil test K fertilizer recommendation for this location. At IHARF, some K additions did tend to increase the % plump seed fraction, thought results were variable both within K rates and between K fertilizer positional placement. No other results from K fertilizer treatments were obtained.

K Placen	nent &								
Rate (kg	/ha)	Yield kg/ha							
Seed	Side band	ICDC*	ECRF	SERF	IHARF	WCA	CLC		
Control -	· 0	4706 b	2737 a	4000 a	4162 a	1554 a	3581 a		
10		5425 a	2116 a	3890 a	4258 a	1448 a	4392 a		
20		5360 ab	2988 a	3786 a	4226 a	1675 a	4178 a		
30		5266 ab	2305 a	3959 a	4199 a	1471 a	4221 a		
	10	5555 a	2417 a	4058 a	4270 a	1555 a	3785 a		
	20	5446 a	2984 a	4221 a	4185 a	1706 a	4118 a		
	30	5821 a	2589 a	4089 a	4264 a	1483 a	3902 a		
20	40	5760 a	2280 a	4048 a	4241 a	1651 a	3532 a		
	LSD (0.05)	695	NS	NS	NS	NS	NS		
	CV (%)	8.7	27.0	6.3	3.4	10.9	16.4		

Table 8. Barley Grain Yield Response to Fertilizer K Applications. Different letters indicated significant differences between treatments (ANOVA, $P \le 0.05$).

* = significant at P<0.10

NS = not significant

Table 9. Barley Grain Protein Response to Fertilizer K Applications. Different letters indicated
significant differences between treatments (ANOVA, $P \le 0.05$).

K Placen	nent &									
Rate (kg	/ha)	Protein %								
Seed	Side band	ICDC*	ECRF	SERF	IHARF	WCA	CLC			
Control -	0	9.2 a	15.9 a	13.9 a	12.3 a	16.38 ab	ND			
10		8.8 ab	15.8 a	13.6 a	12.2 a	16.43 ab	ND			
20		9.0 ab	14.7 a	14.2 a	123 a	16.00 c	ND			
30		9.0 ab	16.0 a	14.1 a	12.3 a	16.45 a	ND			
	10	8.6 b	15.3 a	14.1 a	12.4 a	16.43 ab	ND			
	20	8.8 ab	14.8 a	13.7 a	12.2 a	16.18 bc	ND			
	30	8.6 b	15.8 a	13.6 a	12.3 a	16.28 ab	ND			
20	40	8.6 b	15.7 a	13.9 a	12.4 a	16.20 abc	ND			
	LSD (0.05)	0.4	NS	NS	NS	0.26				
	CV (%)	3.4	5.5	3.7	1.0	1.1				

* = significant at P<0.10

NS = not significant

K Placen	nent &								
Rate (kg/ha)		Test Weight (kg/hL)							
Seed	Side band	ICDC	ECRF	SERF	IHARF	WCA	CLC		
Control -	0	68.4 a	55.3 a	55.3 a	60.8 a	64.9 a	57.2 a		
10		64.8 a	55.0 a	55.8 a	61.3 a	65.1 a	57.5 a		
20		63.8 a	55.2 a	54.4 a	61.6 a	64.5 a	56.7 a		
30		64.0 a	55.3 a	54.8 a	61.2 a	65.2 a	56.4 a		
	10	64.7 a	55.6 a	54.3 a	60.9 a	65.4 a	58.9 a		
	20	63.7 a	55.1 a	55.2 a	60.7 a	65.1 a	57.2 a		
	30	64.8 a	55.6 a	55.4 a	60.9 a	64.8 a	57.2 a		
20	40	64.6 a	55.3 a	55.5 a	61.2 a	64.7 a	56.9 a		
	LSD (0.05)	NS	NS	NS	NS	NS	NS		
	CV (%)	5.2	1.4	2.7	1.0	0.9	2.0		

Table 10. Barley Grain Test Weight Response to Fertilizer K Applications. Different letters indicated significant differences between treatments (ANOVA, $P \le 0.05$).

Table 11. Barley Seed Weight Response to Fertilizer K Applications. Different letters indicated significant differences between treatments (ANOVA, $P \le 0.05$).

K Placer	nent &									
Rate (kg/ha)		Seed Weight (TKW)								
Seed	Side band	ICDC	ECRF	SERF	IHARF*	WCA	CLC			
Control	- 0	47.6 a	43.3 a	41.3 a	41.7 c	64.9 a	43.0 a			
10		47.1 a	44.1 a	41.3 a	42.3 abc	65.1 a	42.1 a			
20		47.7 a	45.0 a	42.0 a	42.8 a	64.5 a	42.4 a			
30		47.4 a	43.3 a	41.3 a	42.4 abc	65.2 a	40.9 a			
	10	47.4 a	44.4 a	41.1 a	42.5 ab	65.4 a	41.7 a			
	20	47.0 a	43.5 a	41.9 a	41.8 bc	65.1 a	42.0 a			
	30	47.6 a	44.3 a	41.6 a	42.1 abc	65.1 a	42.3 a			
20	40	47.2 a	44.7 a	42.1 a	42.8 a	64.7 a	42.9 a			
	LSD (0.05)	NS	NS	NS	0.8	NS	NS			
	CV (%)	2.1	5.0	6.8	1.3	2.2	5.4			

* = significant at P<0.10

NS = not significant

K Placen	nent &								
Rate (kg/ha)		% Plump Seed							
Seed	Side band	ICDC	ECRF	SERF	IHARF	WCA	CLC		
Control - 0		98.5 a	97.0 a	ND	97.2 cd	ND	ND		
10		98.2 a	97.9 a	ND	97.2 bcd	ND	ND		
20		98.4 a	98.2 a	ND	97.8 a	ND	ND		
30		98.1 a	97.7 a	ND	97.2 bcd	ND	ND		
	10	98.0 a	98.7 a	ND	97.0 d	ND	ND		
	20	98.1 a	97.4 a	ND	97.4 abcd	ND	ND		
	30	98.0 a	98.4 a	ND	97.6 abc	ND	ND		
20	40	98.2 a	98.2 a	ND	97.7 ab	ND	ND		
	LSD (0.05)	NS	NS		0.48				
	CV (%)	0.3	1.2		0.3				

Table 12. Barley Plump Seed Percentage Response to Fertilizer K Applications. Different letters indicated significant differences between treatments (ANOVA, $P \le 0.05$).

ND = not determined

Table 13. Barley Thin Seed Percentage Response to Fertilizer K Applications. Different letters
indicated significant differences between treatments (ANOVA, $P \le 0.05$).

K Placen	nent &									
Rate (kg	/ha)	% Thin Seed								
Seed	Side band	ICDC	ECRF	SERF	IHARF	WCA	CLC			
Control -	· 0	1.6 a	0.3 a	ND	0.12 a	ND	ND			
10		1.8 a	0.2 a	ND	0.15 a	ND	ND			
20		1.6 a	0.2 a	ND	0.10 a	ND	ND			
30		1.9 a	0.2 a	ND	0.11 a	ND	ND			
	10	2.0 a	0.2 a	ND	0.14 a	ND	ND			
	20	1.9 a	0.3 a	ND	0.11 a	ND	ND			
	30	2.0 a	0.2 a	ND	0.10 a	ND	ND			
20	40	1.8 a	0.2 a	ND	0.09 a	ND	ND			
	LSD (0.05)		NS		NS					
	CV (%)		48.9		24.8					

NS = not significant

K Placen	nent &									
Rate (kg/ha)		Days to Mature								
Seed	Side band	ICDC	ECRF	SERF	IHARF	WCA	CLC			
Control ·	- 0	83 a	77 a	80 a	87 a	87 a	ND			
10		83 a	78 a	81 a	87 a	87 a	ND			
20		83 a	78 a	81 a	87 a	87 a	ND			
30		83 a	77 a	81 a	87 a	87 a	ND			
	10	83 a	77 a	81 a	87 a	86 a	ND			
	20	83 a	77 a	82 a	87 a	87 a	ND			
	30	83 a	78 a	81 a	87 a	87 a	ND			
20	40	83 a	78 a	82 a	87 a	87 a	ND			
	LSD (0.05)	NS	NS	NS	NS	NS				
	CV (%)	-	1.8	1.2	0.3	1.6				

Table 14. Barley Days to Maturity Response to Fertilizer K Applications. Different letters indicated significant differences between treatments (ANOVA, $P \le 0.05$).

ND = not determined

Table 15. Barley Plant Height Response to Fertilizer K Applications. Different letters indicated
significant differences between treatments (ANOVA, $P \le 0.05$).

K Placen	nent &									
Rate (kg/ha)		Plant Height (cm)								
Seed	Side band	ICDC	ECRF	SERF	IHARF	WCA	CLC			
Control - 0		72 a	69 a	63 a	60 a	55 a	ND			
10		70 a	66 a	63 a	60 a	53 a	ND			
20		69 a	73 a	65 a	59 a	55 a	ND			
30		69 a	66 a	64 a	59 a	54 a	ND			
	10	71 a	65 a	67 a	59 a	52 a	ND			
	20	70 a	71 a	66 a	60 a	56 a	ND			
	30	71 a	67 a	64 a	60 a	53 a	ND			
20	40	72 a	66 a	66 a	59 a	52 a	ND			
	LSD (0.05)	NS	NS	NS	NS	NS				
	CV (%)	3.1	7.5	3.4	3.0	7.2				

NS = not significant

K Placement &							
Rate (kg/ha)		Lodging (Belgian Scale)					
Seed	Side band	ICDC	ECRF	SERF	IHARF	WCA	CLC
Control - 0		0.2 a	1.0 a	0.2 a	0.4 a	0.2 a	0.2 a
10		0.2 a	0.5 a	0.2 a	0.5 a	0.2 a	0.2 a
20		0.2 a	0.6 a	0.2 a	0.5 a	0.2 a	0.2 a
30		0.2 a	0.4 a	0.2 a	0.7 a	0.2 a	0.2 a
	10	0.2 a	0.6 a	0.2 a	0.4 a	0.2 a	0.2 a
	20	0.2 a	0.9 a	0.2 a	0.4 a	0.2 a	0.2 a
	30	0.2 a	0.7 a	0.2 a	0.4 a	0.2 a	0.2 a
20	40	0.2 a	0.8 a	0.2 a	0.8 a	0.2 a	0.2 a
	LSD (0.05)	NS	NS	NS	NS	NS	NS
	CV (%)	-	51.2	-	63.3	-	-

Table 16. Barley Plant Lodging Response to Fertilizer K Applications. Different letters indicated significant differences between treatments (ANOVA, $P \le 0.05$).

11. Conclusions and Recommendations

K fertilizer additions failed to influence seed yield, seed quality or any measured agronomic parameter measured for both wheat and barley grown under dryland conditions in 2021. Irrigated spring wheat also did not respond to K fertilizer additions. Irrigated barley responded to K fertilizer additions with increased grain yield to all K applications. Mean yield response to all K applications was 17%. K fertilizer yield response was greatest where K fertilizer was side banded. Fertilizer salt damage may have reduced the seed placed K fertilizer yield response. Optimal rate of K fertilizer for irrigated barley was 10 kg K₂O/ha.

Supporting Information

12. Acknowledgements

Financial support was provided by the ADOPT initiative under the Canada-Saskatchewan Canadian Agricultural Partnership (CAP) bi-lateral agreement and by Fertilizer Canada. All funding is gratefully acknowledged.

13. Abstract/Summary

Field studies were conducted at six different locations in 2021 to determine the influence of potassium (K) fertilizer additions on spring wheat and barley. All sites conducted soil testing procedures to analyze soil for both ion exchange resin membrane available K and ammonium acetate exchangeable K. Potassium fertilizer as 0-0-60 was applied at 10, 20 and 30 kg K₂O/ha either in the seed row or in a side band position at seeding. An additional treatment of 20 kg K₂O/ha seed row + 40 kg K₂O/ha side band along with an unfertilized control treatment were included. Of the six trial sites, five were established under natural rain fed conditions (dryland) while one trial was irrigated. Dryland trials did not respond to K fertilization with respect to any measured agronomic parameter. The 2021 growing season was characterized by a historic drought. The reason for the lack of K fertilizer responses cannot be positively determined. It may be that barley and wheat do not require additional K nutrition on most Saskatchewan soils; however, the lack of response could also have been due to the adverse environmental conditions experienced at most trial locations. Under irrigated production, wheat failed to respond to fertilizer K applications; however, irrigated barley did respond to K fertilizer applications. All K treatments under irrigation resulted in numerically higher

barley yields compared to the unfertilized control, and most differences between treatments were statistically significant. Yields were higher when the K fertilizer was moved away from the seed row, indicating that fertilizer salt damage might have been occurring when seed placed. An application of 10 kg K₂O/ha appeared optimal. Ideally this trial should be repeated in a more "normal" growing season for proper evaluation. Barley may be more responsive than wheat to K fertilization in higher yielding environments.