

Results of a multi-year field scale study of canola yield, management zones and variable rate N fertilizer response, in Alberta, Saskatchewan and Manitoba Alan Moulin and Mohammad Khakbazan

Brandon Research and Development Centre

Agriculture and Agri-Food Canada

Questions

- Does precision agriculture work?
- What are options to improve N prescriptions for precision agriculture.
- How does precision agriculture address year to year variability of yield?
- Does precision agriculture provide an economic return to the producer?
- What are the environmental advantages to precision agriculture?

Objectives

- Determine the influence of variable fertilizer management on canola yield based on yield zones.
- Determine which variables are best correlated with canola yield and response.
- Determine the potential of variables of interest such as terrain attributes as a covariate to account for variability in yield response to fertilizer treatments.

Variables of Interest

- Canola Yield
- Management zone, N fertilizer rates
- Landform and terrain attributes
- Other plant nutrients, P, K and S
- Soil properties, pH, EC,
- Remote sensing data, Radarsat 2 and Landsat
- Growing season temperature and precipitation

Study Design

- Producers (Alberta, Saskatchewan, and Manitoba) with variable rate equipment and yield maps for 3 to 5 years were asked to collaborate.
- Yield maps for 3 to 5 years prior to the study were used to define yield zones.
- Field areas with high, average and low normalized yields were delineated with AgLeader SMS software.

Study Sites

Ego gland

Canbou River Park Reserve

The Port

Erlepine

FortLand

Sources of Variability: Data Collection

- Variability of yield averages in zones
- Yield map and elevation accuracy
- Yield and position outliers
- Alignment of GPS points along harvest paths
- Recalculation of yield position to minimize effects of grain residence time
- Normalize crop for analysis of multiple years
- Multiple combines and calibration

Experimental Design

- Treatments included three yield zones and four N fertilizer rates (0, 50%, 100% and 150% N based on soil test).
- Fertilizer treatments were nested within yield zones
- Four replicates located in each field to include low, average and high yield zones.
- Total of 48 plots per field.

Experimental Design

to man the

The state of the second st

Experimental Design

- N fertilizer was applied for each field based on soil test recommendations from Manitoba Agriculture
- Soil samples were collected in each plot during the crop year, in the spring and fall.
- Yield goals were set by the producer for each field and adjusted for each zone based on historical data.
- P, K and S fertilizer rates were based on soil test P, K and S, were uniformly applied in all treatments, and judged sufficient for the study.

Terrain Attributes

- Terrain attributes were calculated for each field from elevation data collected by the yield monitor GPS
- Attributes were determined with LandMapR and SAGA
- 49 attributes were calculated including elevation, channel network base, slope, distance to pits, wetness indices, and catchment areas.

Terrain Attributes

Growing Season Precipitation

and the second second

The state of the s

Fertilizer (% of recommended)

1001

Canola Yield (Mg ha⁻¹)

Fertilizer (% of recommended)

Fertilizer (% of recommended)

101100

Canola Yield (Mg ha-1)

2016

2017

Fertilizer (% of recommended)

1001

The state of the second state of the second state of the

Canola Yield (Mg ha-1)

adverte a state of a state of the state of the

Zone

Canola Yield (Mg ha-1)

to the state of a state of a state of the st

2015

Zone

Fertilizer (% of recommended)

Canola Yield (Mg ha-1)

Fertilizer (% of recommended)

Canola Yield (Mg ha-1)

Crop Yield and Treatments

Variable	Significance			
2015				
Zone	0.6811			
Treatment within Zone	0.8763			
2016				
Zone	0.0019			
Treatment within Zone	0.0025			

Canola Yield, Treatments and Farm

Variable	Significance
2015	
Zone	0.0218
Treatment within	
Zone	0.0295
Field	0.0001
2016	
Zone	0.0001
Treatment within	
Zone	0.0001
Field	0.0001
	the second second

Repair

Canola Yield, Treatments, Elevation

Variable	ble Significance		
2015			
Zone	0.0225		
Treatment			
within Zone	0.0302		
Field	0.0001		
Elevation	0.1955		
2016			
Zone	0.0001		
Treatment			
within Zone	0.0001		
Field	0.0001		
Elevation	0.3429		

Repairie

Canola Yield, Treatments

Variable	Significance	
2016		
Average 0 vs Average 100%	0.0039	
Average 0 vs Average 150%	0.0197	
Average 0 vs High 50%	0.0098	
Average 0 vs High 100%	0.0001	
Average 0 vs High 100%	0.0007	
Average 0 vs Low 0%	0.0001	
Average 150 vs Low 0%	0.0001	
High 0 vs High 100	0.0001	
High 50 vs Low 0%	0.0001	
High 100 vs Low 0%	0.0001	
High 50% vs Low 50	0.0121	
High 150 vs Low 0	0.0001	
Low 0 vs Low 50%	0.0349	
Low 0 vs Low 150%	0.0027	

to be made the

Yield Zone Manitoba 2 2015

No. INC.

Treatments 2015

Yield Manitoba 2 2015

10010

The state of a state when all adding on the state of the

Yield Map 2015

Soil test N 0-15 cm 2015

The second second

and the of A state when a final instance on the ball of the late

Soil test P 0-15 cm 2015

· · ·

The state of a state of the sta

Multi-variate 2015

	Number of	
Variable	Splits	Portion
Channel Network Base LevelMEAN	77	0.1564
Sum(PHCA_WA)	31	0.0899
Sum(Sand_WA)	29	0.0781
Sum(BD_WA)	13	0.0563
Sum(Silt_WA)	16	0.0499
LS FactorMEAN	69	0.0495
ElevationMEAN	67	0.0379
z2pitMEAN	80	0.033
MEAN-NDVI-2015/05/20	85	0.0296
MEAN-NDVI-2015/06/14	118	0.027
MEAN-NDVI-2016/06/23	87	0.0223
MEAN-NDVI-2016/04/29	74	0.021
Sum(Clay_WA)	13	0.0209
Nitrate kg ha-1	88	0.0197
MEAN-NDVI-2016/04/04	80	0.0195
pH 1:2	27	0.019
MEAN-NDVI-2015/04/11	67	0.0164
Modified Catchment AreaMEAN	76	0.0154
Trt	84	0.015

- Notesta

Terrain Attribute 2015

Yield Zone Manitoba 1

THE ADDRESS OF THE OWNER OWNER OF THE OWNER OWNE

The state of a second state of the second stat

Yield Manitoba 2 2014

The state of the second state of the state of the second state of the

Soil test N 0-15 cm

Manitoba 2 2014

* Carlos

The state of the s

Soil test P 0-15 cm Manitoba 2 2014

No. INC.

The state of the second state of the state o

Multi-variate analysis Manitoba 1 2014

Term	Number of Splits	Portion
Trt ID (%	3	0.2107
Channel network base levelmean	1	0.1328
300614-w2-vh	1	0.0992
040714-ndvi	1	0.0964
Slopemean	1	0.091
090614-fq17w-vh	1	0.0903
170415-bsco	1	0.0682
140613-w2-vh	1	0.0498
140513-ndvi	1	0.0355
Elevationmean	1	0.0304
090614-fq17w-hh	1	0.0286
Saga wetness indexmean	1	0.0276
Sand %	1	0.0218
Sum(BD_WA Soil Series 2	1	0.0176

· · · ·

The state of the second second

1

0 25 50 100 150 200 1:5,000 Meters

North Co

and the second s

0 25 50 100 150 200 1:5,000

No.

Summary

- It is clear that analysis by field improved interpretation of the effects of management zones and fertilizer treatments particularly for 2015.
- Yield zones and fertilizer management influenced canola yield in analyses which accounted for variability between farms
- Although elevation (channel network base) accounted for a significant proportion of variability of canola yield, the variable did not improve the statistics of fit when added to the analysis as a covariate.
- Remote sensing data will be investigated in subsequent analyses.
- Growing season precipitation and temperature, canola varieties and soil properties will be included in further multivariate analyses to assess variability between farms.
- Soil test recommendations should be reassessed. In my opinion research on soil test recommendations which incorporate mineralizable N, and vertical distribution of N is necessary.

Questions

- Some anecdotal evidence indicates management by yield zones does not work.
- Why practice precision agriculture? Producers already know where the high and low producing areas are located.
- Do we need prescription maps? Current soil survey maps have ample information for varying N fertilizer management.
- We already know that elevation is related to yield.
- There are simple methods for measuring mineralizable N, why invent a new one?
- Can crops access Nitrate N which accumulates below the normal rooting zone? This would affect N use in dry years, and prescription maps.

Collaborators

 Farming Smarter (Lethbridge, Alberta), the Northeast Agricultural Research Foundation (Melfort, Saskatchewan), and Deerwood Soil and Water Management (Miami, Manitoba) will collaborate in field scale research with producers in 2014-2016.

Acknowledgements

- Canola Council staff, Curtis Rempel, Lisa Campbell, Taryn Dickson, Shawn Senko, Kristen Phillips
- MAFRD, Rejean Picard
- Deerwood Soil and Water Management Association, Don Cruikshank
- NARF staff, Stewart Brandt, Jessica Pratchler
- Farming Smarter staff, Ken Coles, Lewis Baarda
- Funding from AAFC and Canola Council 2014-2015, ASI and MAFRD 2008-2012
- John Lee, Agvise Labs

Acknowledgements

- Mohammad Khakbazan, co-principle investigator, agricultural economist, Brandon Research Centre, AAFC
- Aaron Glenn, agricultural meteorologist, Brandon Research Centre, AAFC
- Andrew Kopeechuk and technical staff from the Brandon Research Centre, AAFC
- Nicole Rabe of the Assiniboine Community College collaborated on the MZTRA project and yield zone analysis.
- Lindsay Coulthard, board of the MZTRA, staff members (MAFRD)

Questions?

Thank you!

For more information, please contact: alan.moulin@agr.gc.ca

General guidelines

- 2.8 tonnes ha⁻¹, 50 bushel acre⁻¹ target yield
- 173 kg ha⁻¹, 50 lb acre⁻¹ available N required, 1.4 kg, 3 lb N per bushel
- 70 kg ha⁻¹, 62.5 lb acre⁻¹ P2O5 required, 0.56 kg 1.25 lb per bushel
- 45 kg ha⁻¹, 40 lb acre⁻¹ available Sulphur required, 0.4 kg, 0.8 lb per bushel
- 140 kg ha⁻¹,125 lb acre⁻¹ K2O required, 1.1 kg, 2.5 lb per bushel

Canola Council of Canada

N Rate (lbs/ac) 2015

No. INC.

The state of the second state of the state o

P rate (lb/ac) 2015

No. INC.

The state of A same when the same with the same with the same

Nitrate-N (lb/ac) 2015

And and a state

P (lb/ac) 2015

Contraction of the

The state of the second st

K (lb/ac) 2014

No. The Party of the

The statistic or successful and the state of the state in the

S (lb/ac) 2014

Total and

The state of a strength of the strength of the state of t

S rate (lb/ac) 2015

No. INC.

and a first statements allowed and a statement of the sta

K (lb/ac) 2015

A STREET

THE REAL PROPERTY OF THE PARTY OF THE PARTY

S (lb/ac) 2015

No. No.

and the state of a strength of the state of