Enhancing Yield of Wheat and Oat

Stewart Brandt , Northeast Agriculture Research Foundation Chris Holzapfel, Indian Head Agricultural Research Foundation Laryssa Grenkow, Western Applied Research Corporation

Cereal Yields are Increasing, but have not kept pace with Oilseeds and Pulses

- Yield potential of varieties
- Lodging
- Diseases

How do we increase yield?

- Genetic improvement increases yield potential
- Improved management (eg. Fertilizer and seeding practices) helps crop to reach their full yield potential
- Improved crop protection prevents yield loss

Disease Management

- Cereals
 - Leaf diseases on
 Oat and
 Wheat
 - Fusarium on Wheat

Eungicide Response by Oat: 4 Trials at IHARF and NARF sites in 2012 and 2013

- Very little disease = No Fungicide response
 - Triactor has good disease resistance
- Some growers have seen good responses
 - AC Morgan with poorer disease resistance
 - Late seeding may get Crown Rust

Input Supplier Oat Fungicide Trials near Tisdale (not NARF)

- 3 Headline, 1 Folicur in 2009
- Applied early heading
- Strip trials in farmer fields, repeated 2 X
- Low to moderate disease pressure

Oat Yield Response

Untreated = 158 bu/ac, Treated = 169 bu/ac a7% increase

Fungicides for Wheat 2009-2011

applied at flag leaf stage

			Talla Ca
Variety	Untreated	Tilt	Headline
AC Barrie	58	70 *	72*
Infinity	67	73*	75*
2011 6503 HR	73	76	78

Fungicides for Wheat 2012 (bu/ac)

Fungicides for Wheat 2012 (bu/ac)

AC Barrie P leaf spot F for FHB 5602 HR G for leaf spot F for FHB

Fungicide Timing on Wheat2013 IHARF, NARF, WARC, WCA and CLC

- Unity VB and Shaw VB wheat
- Fungicides: Group 11 @ T1, Group 3 @ T2 and T3
- Fungicide Timings
 - None
 - T1: Flag leaf,
 - T2: 75% Head Emergence
 - T3: 50% Bloom stage
 - T1 + T2
 - T1 + T3
 - T1 + T2 + T3

Fungicide Timing and Leaf Spot Ratings 0= no disease to 12= up to 50% of flag area and >50% of lower leaf area affected.

Treatment	IHARF	NARF	WARC
Check	8.7	7.2	7.1
T1	7.6	5.0	5.1
Τ2	8.1	3.1	5.1
T3	8.0	3.2	5.4
$T_1 + T_2$	7.5	2.7	4.0
T1 + T3	7.5	1.5	4.8
$T_1 + T_2 + T_3$	7.7	1.7	4.7

Fungicide Timing and % of Heads Infected by Fusarium Head Blight

Treatment	IHARF	NARF	WARC
Check	51	83	6
T1	41	86	2
Τ2	33	73	2
T3	17	77	1
$T_1 + T_2$	32	76	1
T1 + T3	16	82	3
$T_1 + T_2 + T_3$	11	79	1

Fungicide Timing and Stagnospora nodorum (glume blotch) rating at WARC

Treatment	Disease Rating
Check	7.0
T1	9.2
T2	5.8
T3	3.4
T1 + T2	4.8
T1 + T3	2.8
$T_1 + T_2 + T_3$	2.7

Fungicide Timing and Wheat Yield (bu/ac)

Treatment	IHARF	NARF	WARC
Check	79C	65b	67c
T1	78c	76ab	75bc
Τ2	8obc	70ab	77abc
T3	83ab	72ab	84ab
$T_1 + T_2$	8oabc	68ab	86a
T1 + T3	84a	74a	83ab
$T_1 + T_2 + T_3$	84a	74a	81ab

Fungicide Timing and Wheat Yield 2013 (avg of 3 locations in 2013)

Input Supplier Wheat Fungicide Trials near Tisdale (not NARF)

3 Quilt, 2 Headline, 2 Folicur, 1 Prosaro = 8 trials
Headline and Quilt at flag
Folicur and Prosaro at heading to 50% bloom

Wheat Yield Responses

Untreated = 51 bu/ac; Treated = 57 bu/ac

Summary; Wheat Diseases

- Critical to know what diseases to target
- Fusarium a bigger yield robber than leaf diseases in 2012 and 2013.
- Optimum timings don't appear to differ between varieties?
- Difficult to justify 2 applications.

Summary; Wheat Diseases

- Use resistant variety for leaf disease and fungicides for fusarium.
- Start applications at 75% head emergence so can finish by 50% flower?

Fertilizer Management

Optimum N Rates at IH, 2009-11

~Optimum N Rate @ 60 kg N/ha

Oat Yield Response to N at IHARF and NARF in 2012 & 2013

Oat Yield Response to N at IHARF and NARF in 2012 & 2013

After a series of years of favorable moisture and high yield, optimum N rates Have increased, from 60lb/ac In 2009-11 to 80 or 100+ Lb/ac in 2012-13

Soil fertility levels appear to change over time, increasing When yields are low and Decreasing in high yield cycles.

Oat Summary

- When yields are less than what we target
 with N
 - 60 lb/ac of N should be enough
 - Use oat to glean N after more intensively managed canola or wheat
- When yield is at or above target yields
 - Require higher N rates (So-100 lb/ac) to optimize yield.

Oat Summary

- On poorly managed or low organic matter
 fields
 - Require higher N rates
 - May need to rebuild soil nutrient supplies

and the set of the set the set

 For 2014 consider higher N rates,
 but be aware that excess N can reduce test weight, and crop may not meet milling quality

Wheat Response to N at IHARF and NARF 2012 & 2013

N Rate (lb/ac) 💆

Wheat Response to N at IHARF and NARF 2012 & 2013

Optimum was about 60 lb/ac N in 2012, and 80 Lb/ac at IHARF in 2013 but not NARF 2013. Why?

Wheat Yield and Lodging Response to N

IHARF and NARF 2012 & 2013

Lodging Likely Limits Yield Responses to Fertilizer More Than Anything Else!

Strategies to Overcome LodgingLodging resistant varieties

Restrict N Rates
Growth Regulators
2012 Results look promising
Expand research in 2013

Growth Regulators

Cycocel

- Restricts cell elongation to reduce crop height (no root shortening)
- New formulations are more reliable
- Most effective at 3 leaf stage

- 2013 trials
 - Melfort and Indian Head
 - Zadoks 2.1; or 3.1; split applications
 - 100%, 125% and 150% fertility levels

Growth Regulator (Manipulator) Effect on Wheat Height (inches), IHARF 2013

	100 Fert	125 Fert	150 Fert	Mean
Check	39.5	39.1	38.8	39.1
Zadoks 2.1	36.5	36.7	35.7	36.3
Zadoks 3.1	32.7	32.6	32.7	32.7
Zadoks 2.1 & 3.1	33.5	33.6	33.3	33.5
Mean	35.6	35.5	35.1	

Growth Regulator (Manipulator) Effect on Wheat Height (inches), NARF 2013

	100 Fert	125 Fert	150 Fert	Mean
Check	34.5	35.9	36.8	35.4
Zadoks 2.1	34.3	35.3	35.5	35.0
Zadoks 3.1	30.5	30.3	31.1	30.6
Zadoks 2.1 & 3.1	30.8	32.7	34.3	32.6
Mean	32.5	33.5	34.4	

Growth Regulator (Manipulator) Effect on Wheat Yield (bu/ac), IHARF 2013

	100 Fert	125 Fert	150 Fert	Mean
Check	70.0	72.1	75.4	72.5
Zadoks 2.1	76.8	77.5	84.1	79.5
Zadoks 3.1	81.3	84.9	89.1	85.1
Zadoks 2.1 & 3.1	80.8	80.8	88.6	80.0
Mean	77.2	78.8	84.1	

Growth Regulator (Manipulator) Effect on Wheat Yield (bu/ac), NARF 2013

	100 Fert	125 Fert	150 Fert	Mean
Check	46.1	49.2	54.9	50.1
Zadoks 2.1	48.1	48.7	53.6	50.1
Zadoks 3.1	45.8	52.1	51.9	49.9
Zadoks 2.1 & 3.1	40.4	49.6	56.6	48.2
Mean	45.2	49.9	54.2	

Plant Growth Regulator Summary

- Much higher yields are possible with PGR AND higher fertilizer rates.
- How reliable are responses to PGR?
- Are additional yield increases possible by combining PGR, Fert and higher plant densities, precision management)?
- Will other factors become limiting (micros, water)?
- What about PGR on other crops?

Some Take Home Messages

- Consider Oat to 'Glean' excess N from previous years in lower yield cycles
- Fertilizer Rates need to Increase in High Yield Cycles
- May need lodging resistant wheat to optimize N
- Growth Regulators may work better than lodging resistance
- Use resistant cultivars to avoid fungicides
- Know what diseases to target with fungicides
 - Resistant cultivars for wheat leaf diseases, fungicides for

Acknowledgements

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

Saskatchewan Ministry of Agriculture

Engage Agro

NARF and AAFC Field Day July 23, 2014

