

SPG Project Annual Progress Report

1. SPG project details Project File number: AGR1509 Project title: Developing phosphorus management recommendations for soybean production in Saskatchewan Reporting period: April 1, 2016 – March 31, 2017 Approved Project Date: March, 2015 Report prepared by: Chris Holzapfel, Indian Head Agricultural Research Foundation (Email: cholzapfel@iharf.ca) Date submitted to SPG: March 28

2. Specify project activities undertaken during this reporting period. *Please note that changes from the original work plan will require consultation with, and written approval from SPG.*

a.) Methodology: Include strategy, experimental design, tests, materials, sites, etc.

In the spring of 2016, soybean field trials were established for second (of three) growing seasons at four locations in Saskatchewan: 1) Indian Head (Black soil zone), 2) Melfort (Moist Black soil zone) 3) Scott (Moist Dark Brown soil zone) and 4) Outlook (Dark Brown soil zone). The treatments evaluated were 3 phosphorus rates (22, 45 or 90 kg P_2O_5 ha⁻¹), three placement methods (seed-placed, side-banded or pre-seed broadcast) plus a control where no P fertilizer was applied. The 10 treatments were arranged in a Randomized Complete Block Design with four replicates. The protocol being followed was originally developed by Don Flaten and a team of researchers in Manitoba for a Pulse Science Cluster 2 project.

Seeding equipment, plot size and basic crop management varied from site-to-site depending on equipment and the specific environmental conditions encountered; however, all factors other than those being evaluated were held constant within each site. All other crop inputs (i.e. seeding rate, inoculant, and pest control products) were based on current recommendations and intended to be non-limiting. The variety was 2310 YR and the soybeans were always double inoculated (seed-applied plus 1-2x label rate of granular). Weeds were controlled using registered herbicide applications tailored to each site and the plots were combined when mature and dry. Pertinent site information and agronomic details are provided for each site in Tables 1 (2015) and 2 (2016).

The data collected included background residual soil nutrient testing, emergence measurements at approximately 2, 3 and 4 weeks after planting, above-ground biomass measurements during pod fill (target R5-R6), whole plant tissue P concentrations/total P uptake, seed yield, seed P concentrations/P exports. At Outlook, emergence counts were only completed at 4 weeks after planting and not all nutrient analyses are available at this time; however, all samples have been submitted and are currently being processed through AgVise laboratories (Northwood, ND).

All available response data available to date has been analysed separately for each site using the mixed procedure of SAS. The effects of P treatments were considered fixed while replicate effects were considered random. Individual treatment means were separated using Tukey's studentized range test and contrasts were used to compare specific groups of treatments (control vs. fertilized, seed-placed vs. side-banded, seed-placed vs. broadcast and side-banded vs. broadcast). Orthogonal contrasts were used to test whether responses to P rate were non-significant, linear or curvilinear separately. All treatment effects and differences between means were considered significant at $P \le 0.05$.

Table 1. Pertinent si	te and agronomic informatior	n for sovbean phosphorus fert	tility study in 2015.	
Factor / Data	Indian Head	Outlook	Melfort	Scott
Collection	2015	2015	2015	2015
Previous crop	Spring Wheat	Spring Wheat	Oat	Spring Wheat
Tillage System	no-till	cultivator/harrow	rototilled	no-till
Row spacing	30 cm	25 cm	19 cm	25 cm
Opener width	1.9 cm	disc	disc	2.5 cm
Seeding date	May 21	May-26	May-21	May-20
Seeding rate	55 seeds/m ²	53 seeds/m ²	55 seeds/m ²	55 seeds/m ²
F	Jun-11		Jun-4	Jun-3
counts	Jun-18	Jun-19	Jun-11	Jun-10
counts	Jun-25		Jun-18	Jun-17
In-crop	890 g glyphosate/ha +	1334 g glyphosate/ha	1334 g glyphosate/ha	1780 g glyphosate/ha
herbicide 1	Jun-8	June-22	Jul-2	Jun-12
In-crop	890 g glyphosate/ha	1334 g glyphosate/ha	1334 g glyphosate/ha	
herbicide 2	Jul-4	Jul-15	Jul-16	—
Biomass harvest	Aug-26	Aug-27	date not available	Jul-28
Seed harvest	Oct-10	Oct 13	Oct-16	Oct-1

Table 2. Pertinent site and agronomic information for soybean phosphorus fertility study in 2016.							
Factor / Data	Indian Head	Outlook	Melfort	Scott			
Collection	2016	2016	2016	2016			
Previous crop	Spring Wheat	Spring Wheat	Spring Wheat	Spring Wheat			
Tillage System	no-till	cultivator/harrow	no-till	no-till			
Row spacing	25 cm	25 cm	30 cm	25 cm			
Opener width	1.9 cm	disc	2.5 cm	2.5 cm			
Seeding date	May 22	May 19	May 18	May 16			
Seeding rate	63 seeds/m ²	53 seeds/m ²	56 seeds/m ²	55 seeds/m ²			
F	Jun-7		Jun-1	May-30			
Emergence	Jun-13	June 22	Jun-7	Jun-6			
counts	Jun-20		Jun-14	Jun-14			
In-crop borbicido 1	890 g glyphosate/ha + 50 g imazethapyr/ha	890 g glyphosate/ha	890 g glyphosate/ha	1134 g glyphosate/ha + 50 g imazethapyr/ha			
THEIDICIDE I	Jun-17	June 22	Juli-12	Jun-17			
In-crop herbicide 2	890 g glyphosate/ha Jul-5	n/a	890 g glyphosate/ha Jul-5	n/a			
Biomass harvest	Aug-19	Aug 27	Aug-16	Sep-6			
Seed harvest	Oct-1	Oct 21	Nov-8	Oct-3			

b.) List and explain any deviations from the approved objectives:

All activities are proceeding on schedule with no major deviations from the original research plan or proposed milestones.

c.) Research results in the reporting period. (Describe progress towards meeting objectives. Please use revised objectives if approved revisions have been made to original objectives.

Objectives	Progress
To investigate soybean response to P fertilizer rates and placement methods in Saskatchewan.	Two of three years of field trials have been completed and all available response data has been summarized and analyzed. Any conclusions regarding the specific objectives of this project are still considered preliminary and subject to change.

add additional lines as required

d.) Discussion: Provide discussion and interpretation necessary to the full understanding (including on-farm use of information, if any) of progress made during this reporting period and the relevance of any findings. Detail any major concerns or project setbacks.

All available response data to date has been analysed and is presented in the following section. Only limited discussion and interpretation of results are offered as the study will continue in 2017 and final data will be combined and re-analysed as appropriate. Soil test results are presented in Table 3. Residual P (Olsen) levels at the sites ranged from 4-22 ppm with less than 10 ppm at half of the test sites. In general, the sites at Indian Head have been extremely low in residual P (4-5 ppm), while those at Scott were more moderate (13-15 ppm) and the highest residual P levels were at Melfort in 2015 (22 ppm).

Table 3. Soil test results for 2015 and 2016 soybean P fertility trials at Indian Head, Outlook, Melfort and Scott. Samples were collected
in the early spring and submitted to AgVise laboratories for various analyses.

Soil Test	Indian Head		Outl	Outlook		Melfort		ott
Parameter	2015	2016	2015	2016	2015	2016	2015	2016
NO ₃ -N (0-60 cm) ^z	15 kg/ha	21 kg/ha	53 kg/ha	35 kg/ha	84 kg/ha	101 kg/ha	53 kg/ha	34 kg/ha
Olsen-P (0-15 cm)	5 ppm	4 ppm	7 ppm	12 ppm	22 ppm	8 ppm	13 ppm	15 ppm
K (0-15 cm)	676 ppm	545 ppm	290 ppm	231 ppm	618 ppm	486 ppm	310 ppm	320 ppm
S (0-60 cm)	18 kg/ha	70 kg/ha	179 kg/ha	47 kg/ha	87 kg/ha	36 kg/ha	92 kg/ha	44 kg/ha
OM % (0-15 cm)	5.6	4.8	_	2.4	11.3	11.5	4.3	4.2
рН (0-15)	7.7	8.0	8.0	7.6	6.3	5.9	5.1	5.4

² Soil only sampled to 30 cm at Melfort

Mean monthly temperatures for each location are presented in Table 4 and total precipitation amounts are in Table 5. Temperatures have been average to slightly above-average for the respective locations over the past two

seasons, with particularly warm weather in June in all cases. Early frost was not considered a yield limiting factor in any cases. Cumulative growing season precipitation amounts were also above average except for Indian Head in 2015 where May-September rainfall amounts were about average and Scott in 2015 where total precipitation was only 79% of the long-term average. Hail occurred in both years at Indian Head with the damage occurring in late June (V1-V2) while in 2016 it occurred late July (R2). In both cases the damage was uniform and not believed to have affected data quality although yields were reduced substantially in 2016 as a result of the damage.

Year	May	June	July	August	September	Avg. / Total
			Mean Ter	nperature (°C)		
Indian Head-16	14.0	17.5	18.5	17.2	12.8	16.0
Indian Head-15	10.3	16.2	18.1	17.0	22.2	16.8
Indian Head-LT	10.8	15.8	18.2	17.4	11.5	14.7
Outlook-16	13.5	17.5	18.6	16.9	12.1	15.7
Outlook-15	10.4	17.3	19.2	17.4	12.6	15.4
Outlook-LT	11.5	16.1	18.9	18.0	12.3	15.4
Melfort-16	13.6	17.1	18.1	16.3	12.0	15.4
Melfort-15	9.9	16.4	17.9	17.0	11.9	14.6
Melfort-LT	10.7	15.9	17.5	16.8	10.8	14.3
Scott-16	12.4	15.8	17.8	16.1	10.9	14.6
Scott-15	9.4	16.0	18.1	16.8	11.0	14.3
Scott-LT	10.8	15.3	17.1	16.5	10.4	14.0

Table 4. Mean monthly temperatures along with long-term (1981-2010) averages for the 2015-16 growing seasons at Indian Head, Outlook, Melfort and Scott, SK.

Table 5. Total precipitation amounts along with long-term (1981-2010) averages for the 2015-16 growing seasons at Indian Head, Outlook, Melfort and Scott, SK.

Year	May	June	July	August	September	Avg. / Total
			Precipit	ation (mm)		
Indian Head-16	73	63	113	30	41	320
Indian Head-15	16	38	95	59	68	275
Indian Head-LT	52	77	64	51	35	280
Outlook-16	56	46	195	70	24	319
Outlook-15	9	39	135	58	48	289
Outlook-LT	39	64	56	43	33	235
Melfort-16	17	53	129	81	41	321
Melfort-15	7	55	150	57	70	339
Melfort-LT	40	54	77	52	34	258
Scott-16	65	21	88	98	22	294
Scott-15	4	19	46	75	50	194
Scott-LT	35	62	72	46	33	247

Emergence measurements were targeted for approximately 2, 3 and 4 weeks after seeding; however the actual

dates varied across sites (i.e. measurements were delayed by approximately 1 week at Indian Head in 2015) and the plants were only counted once (approximately 4 weeks after planting) at Outlook. Emergence results for the first two measurement dates (targeted for 2 and 3 weeks after planting) are deferred to the Appendices (Tables A1-A4). At the first date, overall plant density varied widely across locations due differences in both environmental conditions and the actual measurement dates (i.e. Indian Head 2015 started one 1 week late); however, the overall F-tests for treatment effects on emergence were not significant at any sites. The contrasts, however, showed some evidence of reduced emergence at Scott in both 2015 and 2016 (Tables A1 and A2). At the second measurement date (targeted 3 weeks after planting), the overall F-test was only significant at 1/6 possible site-years but the orthogonal contrasts detected small but significant linear declines in plant density with seed-placement at Indian Head, Melfort and Scott in 2016 (Table A3). Because the effects were small and did not occur at all rates, plant populations with seed-placement only differed from side-band populations at one site (Melfort 2016) when averaged across rates (Table A4). Again, the early emergence measurements were not completed at Outlook.

Treatment effects on emergence for the final measurement date (4-5 weeks after planting) are presented in Tables 6 and 7 below. The overall F-test was only significant in 1/8 cases (Outlook 2016; P < 0.01); however, overall linear declines in plant populations were detected with seed-placement at 3/8 sites (P < 0.01-0.02; Melfort 2015, Melfort 2016 and Scott 2016). Melfort 2016 was the only site-year where, when averaged across rates, final emergence with seed-placed P (33 plants/m²) differed from that of side-band or broadcast placement (46-47 plants/m2; P < 0.01). At Scott in 2015, the linear response was not quite significant (P 0.06); however, there was a strong trend for lower plant densities with high rates of seed-placed monoammonium phosphate whereby 41% fewer plants were observed at the highest rate relative to the control. The overall decline from 0-90 kg P₂O₅/ha ranged from 23-50% at the sites where the linear response was significant at $P \le 0.05$. In nearly all cases, Melfort 2016 being the exception, plant densities at the 45 kg P₂O₅ rate of seed-placed P were numerically similar to those observed in the control and there was never any indication of seedling injury at 22 kg P₂O₅/ha. While evidence of seedling injury was only observed at 38% of the sites, results to date show clear potential for soybean emergence to be negatively impacted by high rates of seed-placed monoammonium phosphate under certain conditions.

within a column	n followed by t	he same letter	do not significa	ntly differ (Tuke	y's studentized	range test, $P \leq 0$).05).	
Treatment ^z	Indiar	Head	Out	Outlook		fort	Scott	
/ Contrast	2015	2016	2015	2016	2015	2016	2015	2016
				T3 Emergenc	e (plants/m ²)			
0 P	48.8 a	49.3 a	56.5 a	46.8 a	49.9 a	48.2	39.6 a	44.8 a
22 P – Sp	46.8 a	54.6 a	60.3 a	44.9 ab	44.3 ab	45.5a a	44.1 a	42.3 a
22 P – Sb	49.0 a	53.3 a	71.3 a	48.9 a	36.9 ab	47.4 a	41.4 a	42.8 a
22 P – Bc	50.3 a	53.3 a	61.3 a	45.7 ab	50.3 a	47.0 a	46.8 a	41.5 a
45 P – Sp	48.6 a	51.1 a	82.3 a	49.0 a	42.2 ab	32.0 a	36.4 a	45.0 a
45 P – Sb	44.7 a	49.4 a	64.8 a	36.2 b	36.2 ab	47.2 a	35.9 a	43.5 a
45 P – Bc	44.9 a	48.0 a	66.3 a	47.2 a	46.1 ab	45.1 a	41.1 a	44.5 a
90 P – Sp	43.9 a	42.5 a	42.3 a	49.0 a	23.6 b	33.8 a	23.4 a	34.5 a
90 P – Sb	50.3 a	47.2 a	75.0 a	50.9 a	38.3 ab	47.2 a	43.1 a	42.5 a
90 P – Bc	51.1 a	51.7 a	68.0 a	49.4 a	39.4 ab	46.5 a	45.8 a	47.5 a
S.E.M.	2.46	3.12	12.41	3.17	5.33	3.64	6.90	3.03
				Pr > F (p-value)			
F-test (trt)	0.396	0.235	0.641	0.004	0.058	0.025	0.490	0.279
Sp – lin	0.198	0.046	0.445	0.280	0.001	0.004	0.056	0.024
Sp – quad	0.629	0.075	0.069	0.952	0.478	0.142	0.399	0.254
Sb – lin	0.776	0.400	0.382	0.443	0.221	0.858	0.790	0.665
Sb – quad	0.212	0.463	0.834	0.001	0.129	0.889	0.646	0.857
Bc – lin	0.683	0.814	0.506	0.295	0.126	0.745	0.670	0.341
Bc – quad	0.243	0.872	0.800	0.601	0.727	0.641	0.911	0.445

Table 6. Treatment means, overall F-test and orthogonal contrast results for soybean emergence at T3 (~4 weeks after planting). Means

² P = kg P_2O_5 ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

Contract	Indian Head		Out	look	Me	fort	Sc	ott
Contrast	2015	2016	2015	2016	2015	2016	2015	2016
				- T3 Emergenc	e (plants/m ²)			
0 P vs	48.8 a	49.3 a	56.5 a	46.8 a	49.9 a	48.2 a	39.6 a	44.8 a
Rest	47.7 a	50.1 a	65.7 a	46.8 a	39.7 a	43.3 a	39.8 a	42.7 a
Pr > <i>F</i>	0.679	0.789	0.488	0.994	0.080	0.234	0.986	0.514
Sp vs	46.4 a	49.4 a	61.6 a	47.6 a	36.7 a	32.9 b	34.6 a	40.6 a
Sb	48.0 a	50.0 a	70.4 a	45.3 a	37.1 a	47.3 a	40.1 a	42.9 a
Pr > <i>F</i>	0.440	0.811	0.395	0.200	0.920	0.002	0.338	0.347
Sp vs	46.4 a	49.4 a	61.6 a	47.6 a	36.7 a	32.9 b	34.6 a	40.6 a
Вс	48.8 a	51.0 a	65.2 a	47.4 a	45.3 a	46.2 a	44.6 a	44.5 a
Pr > <i>F</i>	0.257	0.518	0.726	0.910	0.060	0.005	0.090	0.120
Sb vs	48.0 a	50.0 a	70.4 a	45.3 a	37.1 a	47.3 a	40.1 a	42.9 a
Вс	48.8 a	51.0 a	65.2 a	47.4 a	45.3 a	46.2 a	44.6 a	44.5 a
Pr > <i>F</i>	0.712	0.683	0.614	0.240	0.074	0.733	0.439	0.522

² P = kg P_2O_5 ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

Above-ground biomass yields were measured during the reproductive growth stages. While the ideal target stage was R5-R6, actual growth stages varied therefore the absolute above-ground biomass yields should not be compared across sites (Table 8). The overall F-test was significant at 2/8 sites, Outlook 2015 and Melfort 2016 (P = 0.03-0.05). At Outlook (2015), the highest above-ground biomass yields were observed with 22 kg P₂O₅ ha⁻¹ in the side-band and the lowest occurred with 90 kg P₂O₅ ha⁻¹ placed in the seed-row. The only significant contrasts were those comparing side-banded versus both seed-placed and broadcast P whereby side-banded P resulted in higher biomass yields (averaged across P rates) than the other placement options. None of the orthogonal contrasts were significant for any P placement methods which suggested that these effects may have been somewhat random and largely due to variability. At Melfort in 2016, there was a curvilinear reduction in above-ground biomass with seed-placed P (P = 0.03). Furthermore, while the overall difference between the control and the fertilized plots was not significant (P = 0.55), above-ground biomass with side-banded P was higher than for either seed-placed (P < 0.01) or broadcast P (P = 0.03; Table 9).

column followe	d by the same	letter do not s	ignificantly differ	(Tukey's stude	entized range te	st, <i>P</i> ≤ 0.05).		
Treatment ^z	Indian Head		Outl	Outlook		lfort	Sc	ott
/ Contrast	2015	2016	2015	2016	2015	2016	2015	2016
			A	bove-ground I	Biomass (kg/h	a)		
0 P	7849 a	5328 a	7708 ab	2634 a	6654 a	4056 a	1937 a	9531 a
22 P – Sp	7538 a	4889 a	7648 ab	2338 a	4938 a	3011 a	2246 a	8701 a
22 P – Sb	8768 a	5709 a	10965 a	2343 a	6864 a	4185 a	1874 a	9107 a
22 P – Bc	8333 a	4439 a	7478 ab	2746 a	6727 a	4101 a	2220 a	10039 a
45 P – Sp	8555 a	5383 a	8573 ab	2581 a	5445 a	3319 a	2217 a	9401 a
45 P – Sb	7242 a	6170 a	7845 ab	2292 a	7488 a	4571 a	1810 a	10476 a
45 P – Bc	8227 a	5504 a	7888 ab	2699 a	5263 a	3209 a	1614 a	8831 a
90 P – Sp	8924 a	5127 a	6515 b	2319 a	6452 a	3933 a	1509 a	9138 a
90 P – Sb	7800 a	5189 a	10640 ab	2635 a	7079 a	4316 a	2288 a	9162 a
90 P – Bc	8333 a	6188 a	8443 ab	2568 a	6394 a	3898 a	1822 a	10231 a
S.E.M.	590.0	453.2	929.8	289.8	504.1	338.7	237.9	706.8
				Pr > F (p-value)			
F-test	0.588	0.089	0.032	0.945	0.499	0.048	0.227	0.621
Sp – lin	0.117	0.925	0.365	0.565	0.802	0.750	0.114	0.884
Sp – quad	0.895	0.949	0.261	0.993	0.521	0.033	0.062	0.777
Sb – lin	0.590	0.736	0.122	0.877	0.772	0.545	0.253	0.891
Sb – quad	0.899	0.073	0.962	0.288	0.846	0.431	0.305	0.364
Bc – lin	0.642	0.028	0.482	0.804	0.636	0.553	0.431	0.613
Bc – quad	0.732	0.189	0.777	0.722	0.791	0.178	0.763	0.405

Table 8. Treatment means, overall F-test and orthogonal contrast results for soybean above-ground biomass production. Means within a

² P = kg P_2O_5 ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

Contract	Indian	n Head	Out	look	Me	lfort	Scott	
Contrast	2015	2016	2015	2016	2015	2016	2015	2016
			A	bove-ground I	Biomass (kg/ha	a)		
0 P vs	7849 a	5328 a	7708 a	2634 a	6654 a	4056 a	1937 a	9531 a
Rest	8191 a	5400 a	8444 a	2502 a	6294 a	3838 a	1956 a	9454 a
Pr > <i>F</i>	0.587	0.862	0.438	0.670	0.934	0.545	0.940	0.915
Sp vs	8339 a	5133 a	7579 b	2413 a	5612 a	3421 b	1991 a	9080 a
Sb	7937 a	5689 a	9817 a	2423 a	7144 a	4357 a	1991 a	9582 a
Pr > <i>F</i>	0.412	0.089	0.005	0.965	0.525	0.002	0.999	0.370
Sp vs	8339 a	5133 a	7579 a	2413 a	5612 a	3421 a	1991 a	9080 a
Вс	8298 a	5377 a	7936 a	2671 a	6128 a	3736 a	1885 a	9700 a
Pr > <i>F</i>	0.933	0.446	0.626	0.285	0.092	0.265	0.584	0.270
Sb vs	7937 a	5689 a	9817 a	2423 a	7144 a	4357 a	1991 a	9582 a
Вс	8298 a	5377 a	7936 b	2671 a	6128 a	3736 b	1885 a	9700 a
Pr > <i>F</i>	0.460	0.330	0.015	0.305	0.281	0.034	0.585	0.831

² P = kg P_2O_5 ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

Results for treatment effects on whole plant P concentration are presented in Tables 10 and 11. The overall F-tests were significant at 5/8 site-years (P < 0.01-0.03), the exceptions being Melfort in 2015 (P = 0.37) and Scott in both years (P = 0.16-0.32). While the multiple comparisons test did not identify any specific differences amongst treatment means at Indian Head in 2015, there was an overall linear increase in tissue P concentrations for all three placement methods (P < 0.01-0.03) with total P concentrations increasing from 0.24% in the control to 0.27-0.29%. At Indian Head in 2016, the response was even stronger with increases in P tissue concentration detected for all placement methods and values ranging from 0.18% in the control to as high as 0.29% with 90 kg P_2O_5 /ha of broadcast P. Averaged across rates and placement methods, P fertilizer increased tissue P concentrations by 29% (P < 0.01) at Indian Head in 2016 and mean P concentrations were higher with broadcast placement (0.25%) than seed-row or side-band placement (0.22-0.23%; P < 0.01). At Outlook, tissue P concentrations were consistently higher with P fertilizer than in the control (P < 0.01-0.02); however, placement effects varied between years with seed-placement resulting in the highest concentrations in 2015 versus side-band placement in 2016. At Melfort in 2016, there was evidence of increasing tissue P concentrations with a significant overall F-test and linear responses for side-band and broadcast placement (P < 0.01-0.03). However, the check versus rest comparison was not significant at this site-year (P = 0.10) and there were no differences amongst placement methods when averaged across rates (P = 0.27-0.80). At Scott in 2015, while only the linear orthogonal contrast for seed placement was significant (P < 0.01); overall tissue P concentrations were higher with fertilizer than without (P 0.04) and there were no differences between placement methods when averaged across rates (P = 0.07-0.37).

within a colum	n followed by	the same letter	do not significar	tly differ (Tuke	's studentized	range test, $P \leq 0$	0.05).	
Treatment ^z	Indiar	n Head	Out	ook	Melfort		Scott	
/ Contrast	2015	2016	2015	2016	2015	2016	2015	2016
			Tissue	e Phosphorus (Concentration	ı (% P)		
0 P	0.238 a	0.180 c	0.170 c	0.283 b	0.238 a	0.278 b	0.185 a	0.220 a
22 P – Sp	0.250 a	0.210 bc	0.183 bc	0.303 ab	0.230 a	0.285 ab	0.208 a	0.235 a
22 P – Sb	0.225 a	0.215 b	0.178 bc	0.353 ab	0.228 a	0.278 b	0.208 a	0.240 a
22 P – Bc	0.238 a	0.218 b	0.193 bc	0.343 ab	0.228 a	0.290 b	0.195 a	0.235 a
45 P – Sp	0.250 a	0.220 b	0.245 ab	0.295 ab	0.235 a	0.300 ab	0.208 a	0.228 a
45 P – Sb	0.258 a	0.223 b	0.193 bc	0.353 ab	0.253 a	0.290 ab	0.213 a	0.225 a
45 P – Bc	0.250 a	0.238 b	0.188 bc	0.360 a	0.250 a	0.280 b	0.208 a	0.240 a
90 P – Sp	0.280 a	0.240 b	0.285 a	0.328 ab	0.258 a	0.288 ab	0.235 a	0.243 a
90 P – Sb	0.273 a	0.238 b	0.223 abc	0.345 ab	0.260 a	0.300 ab	0.205 a	0.235 a
90 P – Bc	0.285 a	0.288 a	0.215 abc	0.353 ab	0.253 a	0.320 a	0.200 a	0.250 a
S.E.M.	0.0129	0.0162	0.0190	0.0174	0.0132	0.0081	0.0102	0.0103
				Pr > F (p	-value)			
F-test	0.046	< 0.001	< 0.001	0.004	0.370	0.027	0.164	0.324
Sp – lin	0.027	< 0.001	< 0.001	0.049	0.170	0.358	0.002	0.095
Sp – quad	0.699	0.115	0.693	0.806	0.322	0.124	0.875	0.941
Sb – lin	0.021	< 0.001	0.014	0.022	0.092	0.034	0.254	0.409
Sb – quad	0.687	0.034	0.782	0.007	0.829	0.902	0.107	0.656
Bc – lin	0.008	< 0.001	0.058	0.005	0.221	0.001	0.298	0.016
Bc – quad	0.397	0.407	0.979	0.009	0.920	0.169	0.260	0.490

Table 10. Treatment means, overall F-test and orthogonal contrast results for soybean whole plant tissue P concentrations. Means

² P = kg P₂O₅ ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

Contract	Indian Head		Out	Outlook		lfort	Scott	
Contrast	2015	2016	2015	2016	2015	2016	2015	2016
			Tissu	e Phosphorus	Concentration	(% P)		
0 P vs	0.238 a	0.180 b	0.170 b	0.283 b	0.238 a	0.278 a	0.185 b	0.220 a
Rest	0.257 a	0.232 a	0.211 a	0.337 a	0.243 a	0.289 a	0.210 a	0.235 a
Pr > <i>F</i>	0.175	< 0.001	0.016	0.002	0.632	0.097	0.036	0.060
Sp vs	0.260 a	0.223 a	0.238 a	0.309 b	0.241 a	0.291 a	0.217 a	0.235 a
Sb	0.252 a	0.225 a	0.198 b	0.350 a	0.247 a	0.289 a	0.209 a	0.233 a
Pr > <i>F</i>	0.435	0.771	0.003	0.002	0.556	0.804	0.324	0.802
Sp vs	0.260 a	0.223 b	0.238 a	0.309 b	0.241 a	0.291 a	0.217 a	0.235 a
Вс	0.258 a	0.248 a	0.199 b	0.352 a	0.239 a	0.285 a	0.202 a	0.238 a
Pr > <i>F</i>	0.814	< 0.001	0.004	0.001	0.800	0.387	0.067	0.320
Sb vs	0.252 a	0.225 b	0.198 a	0.350 a	0.247 a	0.289 a	0.209 a	0.233 a
Вс	0.258 a	0.248 a	0.199 a	0.352 a	0.239 a	0.285 a	0.202 a	0.238 a
Pr > <i>F</i>	0.584	0.001	0.947	0.890	0.736	0.268	0.374	0.216

² P = kg P_2O_5 ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

Phosphorus uptake during pod-filling was calculated from the above-ground biomass yields and tissue P concentrations and results from all sites are presented in Tables 12 and 13. For this variable, P was converted to P_2O_5 equivalent so that the units would be the same as those of the P fertilizer rates. The overall F-test for P uptake was significant at 3/8 sites; Indian Head 2016, Outlook 2015 and Melfort 2016 (P < 0.01-0.04); however, there was also evidence of a linear increase in P uptake with fertilization at Indian Head in 2015, particularly for seed-row and broadcast placement (P < 0.01-0.03). At Indian Head in 2016, total P uptake increased from 23 to 29 kg P_2O_5 with monoammonium phosphate when averaged across rates and placement options (P = 0.01). At Outlook in 2015 total P uptake was increased from 30 to 40 kg P_2O_5 /ha with P fertilizer (P = 0.03) and P_2O_5 uptake tended to be lowest with broadcast placement and highest with side-banding. At Melfort in 2016, while the F-test was significant, there was no evidence of increased P uptake with fertilization but rather reduced P uptake with seed-placed fertilizer. This effect was largely attributable to the reduced biomass yields observed with seed-placed P_2O_5 . At Scott in 2015, the measurements were completed earlier than the other site-years therefore absolute values lower; however, there was evidence of a quadratic response to seed-placed P in the orthogonal contrasts despite the lack of a significant overall F-test.

Table 12. Treatment means, overall F-test and orthogonal contrast results for soybean P uptake (based on above-ground biomass yields and P concentrations). Means within a column followed by the same letter do not significantly differ (Tukey's studentized range test, $P \le 0.05$).

Treatment ^z	Indiar	n Head	Outl	ook	Me	fort	Sc	ott
/ Contrast	2015	2016	2015	2016	2015	2016	2015	2016
			Ph	osphorus Upt	ake (kg P ₂ O ₅ /h	ia)		
0 P	42.5 a	22.5 b	29.8 b	17.2 a	22.5 a	42.3 a	8.2 a	48.0 a
22 P – Sp	42.9 a	24.2 b	31.3 b	16.2 a	23.8 a	32.4 a	10.7 a	46.7 a
22 P – Sb	45.2 a	28.2 b	45.0 ab	19.0 a	20.8 a	43.8 a	8.9 a	50.6 a
22 P – Bc	45.6 a	22.0 b	32.2 b	21.8 a	15.2 a	44.5 a	9.9 a	54.1 a
45 P – Sp	48.5 a	27.5 b	47.6 ab	17.3 a	24.4 a	37.3 a	10.4 a	48.7 a
45 P – Sb	42.5 a	31.5 ab	34.5 ab	18.5 a	25.3 a	49.8 a	8.6 a	54.1 a
45 P – Bc	47.2 a	30.3 ab	34.0 ab	22.1 a	25.2 a	33.4 a	7.7 a	48.5 a
90 P – Sp	56.8 a	28.0 b	42.0 ab	17.3 a	25.2 a	42.7 a	7.9 a	50.8 a
90 P – Sb	48.9 a	28.5 b	54.3 a	20.8 a	25.0 a	48.7 a	10.7 a	49.2 a
90 P – Bc	54.3 a	41.1 a	41.9 ab	20.7 a	22.8 a	46.9 a	8.3 a	58.2 a
S.E.M.	3.64	3.68	5.46	2.31	3.11	2.37	1.02	4.18
				Pr > F (µ	o-value)			
F-test	0.065	< 0.001	0.004	0.588	0.408	0.037	0.320	0.401
Sp – lin	0.003	0.083	0.020	0.894	0.538	0.547	0.516	0.474
Sp – quad	0.609	0.511	0.109	0.900	0.854	0.100	0.023	0.746
Sb – lin	0.226	0.105	0.001	0.314	0.406	0.199	0.076	0.834
Sb – quad	0.616	0.034	0.650	0.998	0.940	0.488	0.583	0.220
Bc – lin	0.017	< 0.001	0.044	0.427	0.451	0.578	0.722	0.076
Bc – quad	0.825	0.261	0.743	0.171	0.799	0.086	0.848	0.593

² P = kg P_2O_5 ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

ground biomas	s yields and P o	concentrations).					uptune (buseu)	
Contract	Indiar	n Head	Out	look	Me	lfort	Sc	ott
Contrast	2015	2016	2015	2016	2015	2016	2015	2016
			Pł	nosphorus Upt	ake (kg P ₂ O ₅ /h	na)		
0 P vs	42.5 a	22.5 b	29.8 b	17.2 a	22.5 a	42.3 a	8.2 a	48.0 a
Rest	48.0 a	29.0 a	40.3 a	19.3 a	23.1 a	42.2 a	9.2 a	51.2 a
Pr > <i>F</i>	0.135	0.013	0.026	0.399	0.865	0.967	0.312	0.383
Sp vs	49.4 a	26.6 a	40.3 a	16.9 a	24.5 a	37.5 b	9.7 a	48.7 a
Sb	45.5 a	29.4 a	44.6 a	19.4 a	23.7 a	47.4 a	9.4 a	51.3 a
Pr > <i>F</i>	0.170	0.148	0.224	0.199	0.749	0.004	0.737	0.363
Sp vs	49.4 a	26.6 b	40.3 a	16.9 a	24.5 a	37.5 a	9.7 a	48.7 a
Вс	49.0 a	31.1 a	36.0 a	21.5 b	21.1 a	41.6 a	8.6 a	53.6 a
Pr > <i>F</i>	0.898	0.022	0.226	0.022	0.174	0.203	0.210	0.089
Sb vs	45.5 a	29.4 a	44.6 a	19.4 a	23.7 a	47.4 a	9.4 a	51.3 a
Вс	49.0 a	31.1 a	36.0 b	21.5 a	21.1 a	41.6 a	8.6 a	53.6 a
Pr > <i>F</i>	0.212	0.358	0.020	0.273	0.292	0.075	0.354	0.407

Table 13, Contrast comparisons for phosphorus fertilization and placement effects on soybean phosphorus uptake (based on above-

^Z P = kg P₂O₅ ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

Treatment means and test results for soybean seed yield are presented in Tables 14 and 15. Averaged across treatments, mean yields ranged from 2526-4222 kg/ha and the overall F-tests for treatment effects on soybean yield were significant at 3/8 site-years (Indian Head 2016, Outlook 2015 and Melfort 2016). Of these sites, Indian Head 2016 was the only one where there was a clear positive yield response to P fertilizer. At this site yields increased guadratically with P, regardless of placement method, from 2225 kg/ha in the control to over 2600 kg/ha when 45 kg P2O5/ha or more was applied. This was an increase of approximately 18% and the effects on seed yield were similar for all placement options. While the overall F-test was not significant (P = 0.08), there was evidence of a positive response to P fertilizer at Outlook in 2016 with significant orthogonal linear contrasts for all three placement methods (P = < 0.01-0.02) and a 13% yield advantage in the fertilized plots relative to the control. Like Indian Head in 2016, there were no differences amongst placement methods detected. For the other sites where significant treatment effects on yield were detected they were negative. At Outlook in 2015, while the control did not yield lower than any of the fertilized treatments, there was a significant yield reduction at the highest rate (90 kg P₂O₅) was applied in the seed-row. Consequently, relative to the control, yields were slightly lower in the fertilized plots when averaged across rates and placement methods (P = 0.05). Further evidence of this existed in the contrasts which indicated lower overall yields with seed-placement relative to side-banding or broadcasting (P <0.01); however, the reduction was only observed at the highest fertilizer rate. Inexplicably, at Melfort in 2016 the significant F-test appeared to be due to a tendency for lower yields with P fertilization; however, the negative effects appeared strongest for side-band and broadcast placement which contradicts the negative impact seedplacement had on emergence and biomass yields.

Treatment ^z	India	n Head	Out	Outlook		lfort	Sc	ott
/ Contrast	2015	2016	2015	2016	2015	2016	2015	2016
				Seed Yiel	d (kg/ha)			
0 P	2632 a	2225 d	4419 a	3476 a	3536 a	3052 a	1601 a	3366 a
22 P – Sp	2689 a	2421 cd	4380 a	4011 a	3636 a	2481 a	1842 a	3217 a
22 P – Sb	2818 a	2468 bc	4317 a	3888 a	3574 a	2947 a	1657 a	3270 a
22 P – Bc	2707 a	2443 c	4295 a	3728 a	3908 a	2768 a	1621 a	3491 a
45 P – Sp	2669 a	2553 abc	4120 a	3886 a	3895 a	2841 a	1649 a	3382 a
45 P – Sb	2736 a	2560 abc	4277 a	3825 a	3721 a	3162 a	1511 a	3445 a
45 P – Bc	2766 a	2621 abc	4227 a	3903 a	3611 a	3035 a	1533 a	3471 a
90 P – Sp	2762 a	2666 ab	3619 b	4002 a	3521 a	2950 a	1254 a	3291 a
90 P – Sb	2715 a	2607 abc	4240 a	3977 a	3765 a	2461 a	1799 a	3538 a
90 P – Bc	2741 a	2696 a	4324 a	4005 a	3745 a	2430 a	1770 a	3446 a
S.E.M.	59.3	87.7	105.8	119.2	245.7	150.0	170.0	238.8
				Pr > F (p-value)			
F-test	0.599	< 0.001	< 0.001	0.076	0.720	0.009	0.421	0.907
Sp – lin	0.146	< 0.001	< 0.001	0.016	0.970	0.743	0.062	0.909
Sp – quad	0.859	0.037	0.246	0.064	0.121	0.074	0.143	0.961
Sb – lin	0.680	< 0.001	0.228	0.014	0.295	0.010	0.443	0.322
Sb – quad	0.123	0.004	0.599	0.192	0.816	0.077	0.475	0.760
Bc – lin	0.214	< 0.001	0.567	0.003	0.678	0.012	0.481	0.816
Bc – quad	0.263	0.005	0.215	0.229	0.623	0.331	0.529	0.640

^Z P = kg P_2O_5 ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

Contract	Indiar	n Head	Outlook		Me	lfort	Sc	ott		
Contrast	2015	2016	2015	2016	2015	2016	2015	2016		
0 P vs	2632 a	2225 b	4419 a	3476 b	3536 a	3052 a	1601 a	3366 a		
Rest	2734 a	2559 a	4200 b	3914 a	3708 a	2786 a	1626 a	3395 a		
Pr > <i>F</i>	0.113	< 0.001	0.045	0.001	0.340	0.105	0.885	0.869		
Sp vs	2707 a	2547 a	4040 b	3966 a	3684 a	2757 a	1582 a	3297 a		
Sb	2756 a	2545 a	4278 a	3897 a	3687 a	2857 a	1656 a	3418 a		
Pr > <i>F</i>	0.311	0.952	0.006	0.468	0.985	0.426	0.589	0.361		
Sp vs	2707 a	2547 a	4040 b	3966 a	3684 a	2757 a	1582 a	3297 a		
Вс	2738 a	2587 a	4282 a	3879 a	3755 a	2744 a	1641 a	3469 a		
Pr > <i>F</i>	0.519	0.284	0.006	0.364	0.614	0.913	0.661	0.198		
Sb vs	2756 a	2545 a	4278 a	3897 a	3687 a	2857 a	1656 a	3418 a		
Вс	2738 a	2587 a	4282 a	3879 a	3755 a	2744 a	1641 a	3469 a		
Pr > <i>F</i>	0.707	0.258	0.963	0.853	0.627	0.366	0.918	0.698		

^Z P = kg P₂O₅ ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

Treatment means and test results for seed P concentrations are presented in Tables 16 and 17. Averaged across treatments, seed P concentrations ranged from 0.47-70% depending on the site-year. The overall F-test for seed P concentrations was significant at 6/8 site-years and the response has generally either been linear/quadratic increases in seed P concentration with increasing P rates and/or overall higher seed P concentrations with P fertilization. The most consistent responses were observed at Indian Head in both years and Outlook in 2015 and differences in placement options were generally not significant in these cases. The major exception was at Indian Head in 2016 where broadcast P resulted in higher P concentrations than either seed-placed or side banded P.

Treatment ^z	India	n Head	Out	look	Me	lfort	Sc	ott
/ Contrast	2015	2016	2015	2016	2015	2016	2015	2016
•			Seed	Phosphorus (Concentration	(% P)		
0 P	0.488 b	0.393 e	0.528 b	0.593 a	0.548 b	0.693 a	0.558 ab	0.550 a
22 P – Sp	0.510 ab	0.435 d	0.535 b	0.595 a	0.553 b	0.680 a	0.630 a	0.573 a
22 P – Sb	0.518 ab	0.425 de	0.550 b	0.648 a	0.533 b	0.685 a	0.590 ab	0.585 a
22 P – Bc	0.520 ab	0.458 cd	0.540 b	0.620 a	0.493 b	0.675 a	0.563 ab	0.555 a
45 P – Sp	0.530 ab	0.460 cd	0.588 ab	0.605 a	0.525 b	0.698 a	0.605 ab	0.583 a
45 P – Sb	0.538 ab	0.455 cd	0.570 ab	0.640 a	0.520 b	0.730 a	0.528 b	0.575 a
45 P – Bc	0.518 ab	0.493 bc	0.565 ab	0.628 a	0.540 b	0.705 a	0.593 ab	0.573 a
90 P – Sp	0.568 ab	0.503 ab	0.625 a	0.613 a	0.558 ab	0.710 a	0.575 ab	0.573 a
90 P – Sb	0.578 a	0.505 ab	0.620 a	0.608 a	0.530 b	0.723 a	0.540 b	0.570 a
90 P – Bc	0.565 ab	0.535 a	0.588 ab	0.633 a	0.640 a	0.730 a	0.563 ab	0.593 a
S.E.M.	0.0257	0.0180	0.0130	0.0150	0.0229	0.0147	0.0172	0.0158
				Pr > F	(p-value)			
F-test	0.020	< 0.001	< 0.001	0.117	< 0.001	0.036	0.009	0.669
Sp – lin	0.002	< 0.001	< 0.001	0.273	0.806	0.202	0.952	0.350
Sp – quad	0.890	0.111	0.890	0.954	0.352	0.549	0.011	0.210
Sb – lin	0.001	< 0.001	< 0.001	0.917	0.513	0.040	0.173	0.575
Sb – quad	0.748	0.493	0.842	0.005	0.393	0.461	0.917	0.205
Bc – lin	0.005	< 0.001	0.002	0.070	< 0.001	0.014	0.752	0.036
Bc – quad	0.936	0.001	0.759	0.283	0.002	0.335	0.209	0.947

Table 16. Treatment means, overall F-test and orthogonal contrast results for sovbean seed P concentrations. Means within a column

² P = kg P₂O₅ ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

Contract	Indian Head		Out	Outlook		Melfort		Scott	
Contrast	2015	2016	2015	2016	2015	2016	2015	2016	
			Seed	Phosphorus C	Concentration	(% P)			
0 P vs	0.488 b	0.393 b	0.528 b	0.593 a	0.548 a	0.693 a	0.558 a	0.550 a	
Rest	0.538 a	0.474 a	0.576	0.621 a	0.544 a	0.704 a	0.576 a	0.576 a	
Pr > <i>F</i>	0.010	< 0.001	0.002	0.065	0.827	0.411	0.314	0.119	
Sp vs	0.536 a	0.466 a	0.583	0.604 b	0.545 a	0.696 a	0.603 a	0.576 a	
Sb	0.545 a	0.462 a	0.580	0.632 a	0.528 a	0.713 a	0.553 b	0.577 a	
Pr > <i>F</i>	0.561	0.519	0.816	0.023	0.241	0.126	0.001	0.946	
Sp vs	0.536 a	0.466 b	0.583	0.604 a	0.545 a	0.696 a	0.603 a	0.576 a	
Вс	0.534 a	0.495 a	0.564	0.627 a	0.558 a	0.703 a	0.573 b	0.574 a	
Pr > <i>F</i>	0.907	< 0.001	0.100	0.059	0.399	0.484	0.037	0.839	
Sb vs	0.545 a	0.462 b	0.580	0.632 a	0.528 b	0.713 a	0.553 a	0.577 a	
Вс	0.534 a	0.495 a	0.564	0.627 a	0.558 a	0.703 a	0.573 a	0.574 a	
Pr > <i>F</i>	0.486	< 0.001	0.148	0.665	0.050	0.393	0.166	0.786	

^Z P = kg P₂O₅ ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

Treatment means and test results for P exports in the harvested seed are presented for all sites where data is available in Tables 18 and 19. Similar to the values for P uptake, P was also converted to P_2O_5 for this parameter. Overall mean P_2O_5 exports ranged from 21-55 kg P_2O_5 /ha, largely depending on the seed yields that were achieved. In general, the treatments had less of an impact on P2O5 exports than they did on seed P concentrations alone with significant F-tests at only 3/8 site-years. The strongest and most consistent response was at Indian Head in 2016 where both seed yields and P concentrations were increased with fertilizer application. Reasonably consistent responses were also detected at Indian Head in 2015 and Outlook in both years where the orthogonal contrasts and/or control versus rest comparisons were significant.

Treatment ^z	Indiar	n Head	Outlook		Melfort		Sco	ott
/ Contrast	2015	2016	2015	2016	2015	2016	2015	2016
			Ph	osphorus Expo	orts (kg P ₂ O ₅ /h	a)		
0 P	30.8 a	20.0 e	53.5 a	47.3 a	43.9 a	48.5 ab	22.8 ab	46.0 a
22 P – Sp	31.3 a	24.2 d	53.8 a	54.8 a	46.3 a	38.7 b	28.1 a	45.5 a
22 P – Sb	32.4 a	24.1 d	54.4 a	57.7 a	43.3 a	46.2 ab	18.9 ab	47.4 a
22 P – Bc	32.7 a	25.7 cd	53.2 a	53.1 a	44.4 a	42.8 ab	20.6 ab	48.1 a
45 P – Sp	32.7 a	26.9 c	55.4 a	54.0 a	46.8 a	45.5 ab	17.1 b	48.8 a
45 P – Sb	33.9 a	26.8 c	55.9 a	56.2 a	44.4 a	52.8 a	21.8 ab	49.3 a
45 P – Bc	33.2 a	29.7 b	54.7 a	56.0 a	44.6 a	49.0 ab	22.2 ab	49.4 a
90 P – Sp	35.8 a	30.8 b	51.8 a	56.2 a	45.1 a	48.1 ab	19.4 ab	46.5 a
90 P – Sb	36.2 a	30.2 b	60.2 a	55.3 a	45.6 a	40.8 ab	22.4 ab	50.0 a
90 P – Bc	33.7 a	33.1 a	58.4 a	58.0 a	54.9 a	40.6 ab	19.5 ab	50.5 a
S.E.M.	1.78	1.75	2.03	2.45	3.46	2.57	1.94	3.02
				Pr > F (o-value)			
F-test	0.083	< 0.001	0.132	0.107	0.325	0.012	0.038	0.612
Sp – lin	0.004	< 0.001	0.545	0.023	0.865	0.451	0.031	0.706
Sp – quad	0.642	0.004	0.294	0.175	0.488	0.065	0.752	0.442
Sb – lin	0.004	< 0.001	0.013	0.074	0.628	0.068	0.756	0.137
Sb – quad	0.764	0.003	0.670	0.015	0.841	0.054	0.368	0.610
Bc – lin	0.123	< 0.001	0.051	0.003	0.011	0.092	0.301	0.107
Bc – quad	0.430	< 0.001	0.512	0.168	0.216	0.515	0.894	0.591

.. . . ilto fo .h -1 E

² P = kg P_2O_5 ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

Table 19. Cont	trast compariso	ns for phosphor	us fertilization a	and placement of	effects on soybe	an seed P ₂ O ₅ ex	ports.	
6	Indiar	n Head	Out	look	Me	lfort	Sc	ott
Contrast	2015	2016	2015	2016	2015	2016	2015	2016
			Pł	osphorus Exp	orts (kg P ₂ O ₅ /ł	na)		
0 P vs	30.8 b	20.0 b	53.5 a	47.3 b	43.9 a	48.5 a	22.8 a	46.0 a
Rest	33.5 a	27.9 a	55.3 a	55.7 a	46.2 a	44.9 a	21.1 a	48.4 a
Pr > <i>F</i>	0.042	< 0.001	0.365	0.002	0.492	0.205	0.414	0.245
Sp vs	33.3 a	27.3 a	53.7 b	55.0 a	46.1 a	44.1 a	21.5 a	46.9 a
Sb	34.2 a	27.0 a	56.4 a	56.4 a	44.4 a	46.6 a	21.0 a	48.9 a
Pr > <i>F</i>	0.382	0.460	0.053	0.450	0.514	0.240	0.763	0.228
Sp vs	33.3 a	27.3 b	53.7 a	55.0 a	46.1 a	44.1 a	21.5 a	46.9 a
Вс	33.2 a	29.5 a	55.4 a	55.7 a	48.0 a	44.1 a	20.8 a	49.3 a
Pr > <i>F</i>	0.955	< 0.001	0.276	0.687	0.440	0.978	0.636	0.144
Sb vs	34.2 a	27.0 b	56.4 a	56.4 a	44.4 a	46.6 a	21.0 a	48.9 a
Bc	33.2 a	29.5 a	55.4 a	55.7 a	48.0 a	44.1 a	20.8 a	49.3 a
Pr > <i>F</i>	0.352	< 0.001	0.371	0.723	0.160	0.251	0.863	0.788

^Z P = kg P₂O₅ ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

e.) List summary of findings, implications, and briefly discuss any conclusions.

Overall, the first two years of this project have been considered successful with a wide range in overall soybean yields and soil test P levels / environmental conditions and all work proceeding on schedule. Focussing on emergence, negative effects of high rates of seed-placed P were detected at 3/8 site-years but only observed at the highest rates. Occasionally this led to reduced biomass yields and, subsequently, P update. While biomass was generally unaffected, higher overall tissue P concentrations were detected at half (4/8) of the site-years and an overall increase in P uptake (based on biomass yields and tissue P concentrations at 2/8 site-years. There was evidence of yield increases with P fertilization at 2/8 site-years (Indian Head 2016 and Outlook 2016) but, due primarily to the loss at the highest rate of seed place P, lower overall yields at Outlook in 2015. Seed P concentrations are not yet available for all sites but preliminary analyses showed clear increases with fertilization in both years at Indian Head. In 2015 there were no differences amongst placement options while in 2016 seed P concentrations were highest with broadcast placement. Total P export data are not available for all sites either; however, significant increases with P fertilizer were detected both years at Indian Head. Notably, total P exports ranged from 22-48 kg P2O5 (of the data which is available) depending on the overall yields indicating that applied rates should be in this range to maintain soil fertility over the long-term. Despite the fact the reductions in emergence have been relatively uncommon and, in most cases modest, growers are advised to be extremely cautious or avoid seed-row placement for rates beyond 22 kg P_2O_5/ha .

3. Non-confidential abstract/summary: This must include overall project objectives, a brief mention of methodology and research design, and a summary of findings for use in publications and on the SPG website. Maximum 500 words <u>in lay language</u>. Please note that this summary will be used as such and no additional permission will be sought from the project applicant to publish the summary.

A project was initiated in 2015 to investigate soybean response to phosphorus (P) fertilizer rates and placement options under field conditions in Saskatchewan. The second year of field trials has been completed with locations

at Indian Head, Outlook, Melfort and Scott. The treatments are a combination of 3 P fertilizer rates (22, 45 and 90 kg P₂O₅ ha⁻¹) and 3 placement options (seed-placed, side-banded and pre-seed broadcast) along with a control. The specific field protocols being followed were originally developed at the University of Manitoba and have also been implemented at various locations throughout that province. Preliminary results showed evidence of reduced plant populations with 45-90 kg ha⁻¹ of seed-placed P at 3/8 site-years (Melfort 2015 and 2016 and Scott 2016) while, at Outlook in 2015, effects on emergence were not significant but yields were reduced with 90 kg P₂O₅ ha⁻¹ of seed-placed P. While negative impacts on emergence were not always detected and were frequently subtle, these results support the recommendation that rates of seed-placed P exceeding 22 kg P₂O₅/ha should be avoided to minimize the potential for seedling injury. While whole plant tissue P concentrations were increased with fertilization to some extent at the majority of sites, seed yield increases with P were only evident at 2/8 sites with the strongest response at Indian Head 2016 and smaller but significant linear yield increases with P fertilizer at Outlook in 2016. The magnitudes of the responses were approximately 18% and 13% at Indian Head (2016) and Outlook (2016), respectively. In contrast, at Outlook in 2015 the only significant P fertilizer effects on yield were negative and specific to the highest rate of seed placed P. This work is continuing at all four locations in 2017 with funding provided by the Saskatchewan Pulse Crop Development Board.

4. List any technology transfer activities undertaken in relation to this project: *Include conference presentations, posters, papers published, etc.*

In 2015, the research was introduced and field trials shown at two major field days at Indian Head, to approximately 70 retail agronomists on Jul-10 (Federated Coop Limited Tour) and 200 producers and agronomists on Jul-21 (Indian Head Crop Management Field Day). The first tour was hosted by Chris Holzapfel while, at the latter, John Heard (MAFRI) helped lead a discussion on soybean inoculation, starter N and options for rescuing crops in cases where nodulation is inadequate. The trial was also highlighted at a Faba bean and Soybean tour at Melfort on Jul-29 (2015) which was attended by 75 people. In 2016, the trial was again shown and discussed by Chris Holzapfel (IHARF) and Corey Loessin (SPG) at the Indian Head Crop Management Field Day (Jul-19, 212 guests) and again on tours coordinated with Arysta Lifesciences (Jul-26, 45 guests) and Richardson Pioneer (Jul-27, 33 guests). At Outlook in 2016, the trial was shown to approximately 300 guests at the ICDC Field Day and again to approximately 50 guests on a smaller tour on Aug-16. At the 2016 Scott Field Day on Jul-13, Jeff Schoenau and WARC staff showed the trials and presented on the subject to approximately 200 people. Preliminary results were also presented by Chris Holzapfel at the Corn and Soybean Summit in Estevan (Dec-9 2016), approximately 40 guests) and at the IHARF Winter Seminar and AGM in Weyburn (Feb-1 2016, approximately 100 guests). Jessica Pratchler presented preliminary results at the SIA Ag Update in Melfort (February 2, approximately 150 guests).

5. List any changes expected to industry contributions, in-kind support, collaborations or other resources.

There are no confirmed or anticipated changes to industry contributions, in-kind support, collaborations or other resources specifically attributable to this project.

6. Appendices: *Include any additional materials supporting the previous sections, e.g. detailed data tables, maps, graphs, photos, specifications, literature cited, acknowledgments.*

Project Rationale and Review of the Literature

The current research was initiated to determine the best phosphorus fertilizer rate and placement options for soybean production in Saskatchewan to help growers produce this crop in the most economically, agronomically and environmentally sound manner possible. While still a relatively minor crop provincially, southeast Saskatchewan saw rapid adoption of this crop and, since then, producers throughout the province have expressed interest in this crop and have been experimenting with it. In Manitoba, farmers have adopted soybeans as a major component of their crop rotation, with more than 1 million acres planted in 2013 up to a reported 1.6 million acres in 2016. In Saskatchewan, 2016 soybean acres were estimated at approximately 240,000 acres compared to 170,000 in 2013. Soybeans are larger users of P; therefore, incorporating this crop into rotations requires sound

management of this nutrient. A study conducted near Carman, Manitoba showed that soybeans require approximately 1.35 lb P_2O_5 per bushel to grow and, at harvest, remove approximately 1.1 lb P_2O_5 per bushel (Heard 2006). For a 40 bus/ac, or 2700 kg/ha, soybean crop, this is a total P requirement of approximately 50 kg P_2O_5 /ha. Consequently, appropriate P fertilization strategies must be developed and used to ensure high yields of soybeans in addition to other crops in our rotations.

Research in Illinois showed that soybean root distribution was not affected by P fertilizer rate or placement when the fertilizer was broadcast or deep banded prior to seeding (Farmaha et al. 2012), thereby indicating that soybeans are not particularly efficient at seeking out fertilizer P bands with their roots. However, it has been shown that soybeans do yield more in soils with high P fertility than low P fertility (eg. 10-15 more bushels per acre in southern Minnesota, Randall 2012) and that this crop makes excellent use of the soil's P reserves (Kalra & Soper 1967). This may be because soybeans take up a large portion of their P late in the growing season (Heard 2005) using a fully developed network of roots and mycorrhizal fungi. Currently, there is conflicting evidence as to whether soybeans respond better to banded or broadcast P fertilizer or to P fertilizer at all.

Given our relatively cold soils and short growing season compared to more traditional soybean regions (i.e. southern Ontario and the US Midwest), farmers in the Canadian Prairies typically band P in or near the seed-row at planting to ensure availability early in the season and to slow down conversion to less available forms. However, soybeans are considered sensitive to seed-placed fertilizer so applying the required amounts of P fertilizer in or near the seed may reduce plant stands. In Argentina, Salvagiotti et al. (2013) found that broadcast or side-banded monoammonium phosphate did not affect plant establishment or nodulation while seed-placement of this fertilizer consistently reduced both variables but did not affect seed yield. Preliminary studies in Manitoba in 2013 and 2014 showed substantial plant stand reductions from seed-placed P in coarse textured soils, but only at 80 lb P₂O₅ per acre with no significant impact on plant stands in clay soils (Bardella et al. 2014). This suggests that soybeans may be less sensitive to seed-placed P in western Canadian soils than anticipated, but caution is still advised particularly in coarse textured soils. Given concerns about seedling sensitivity and the fact that soybeans are large users of P, growers may either face long-term fertility issues or risk seedling injury and possible yield reductions if relying solely on seed-placed P for this crop. Research in Iowa has shown that soybeans respond to P fertilizer when soil-test P is low and that P uptake tended to be higher with side-banded versus broadcast P; however, again, fertilizer placement did not affect yield (Borges and Mallarino 2000). Due to concerns of seedling toxicity and soybean's inconsistent response to banded P, broadcast P has occasionally been recommended for soybeans and is a particularly good fit to those using planters with limited options for fertilizer placement. The concern is that broadcasting may not be as agronomically efficient as subsurface banding and doing so may leave the P fertilizer vulnerable to runoff losses to surface water, especially if broadcast in fall.

The current project aims to expand upon the current research base by investigating soybean response to P fertilizer rates and placement methods in Saskatchewan with the overall objective of improving P management recommendations for the growing number of soybean producers in this province.

Literature Cited

Bardella, G., Heard, J., Lange, D., Lawley, Y., Grant, C. and Flaten, D. 2014. 4R P Management for soybeans in the northern frontier: Rate and placement effects on plant stand and seed yield. Proc. Manitoba Agronomists Conference. University of Manitoba. Winnipeg, Manitoba. [Online] Available: http://umanitoba.ca/faculties/afs/agronomists_conf/posters.html [18 Dec. 2014].

Borges, R. and Mallarino, A.P. 2000. Grain yield, early growth, and nutrient uptake of no-till soybean as affected by phosphorus and potassium placement. Agron. J. 92: 380-388.

Farmaha, B., Fernandez, F. and Nafziger, E.D. 2012. Distribution of soybean roots, soil water, phosphorus and potassium concentrations with broadcast and subsurface-band fertilization. Soil Sci. Soc. Am. J. 76: 1079-1089.

Heard, J. 2006. Nutrient uptake and partitioning by soybeans in Manitoba. Proc. Manitoba Agronomists Conference. University of Manitoba. Winnipeg, Manitoba. [Online] Available: http://www.umanitoba.ca/faculties/afs/MAC_proceedings/2006/proceedings.html [27 Nov. 2014].

Kalra, Y.P. and Soper, R.J. 1967. Efficiency of rape, oats, soybeans, and flax in absorbing soil and fertilizer phosphorus at seven stages of growth. Agron. J. 60: 209-212.

Randal, G. 2012. Fertility Management of Soybeans. Proc. Manitoba Agronomists Conference. University of Manitoba. Winnipeg, Manitoba. [Online] Available:

http://umanitoba.ca/faculties/afs/agronomists_conf/MAC%20Proceedings%202012.html [27 Nov. 2014].

Acknowledgements

Direct collaborators in this project include Garry Hnatowich (Irrigation Crop Diversification Corporation), Stewart Brandt (Northeast Agriculture Research Foundation) and Jessica Weber/Gazali Issah (Western Applied Research Corporation who are responsible for the sites at Outlook, Melfort, and Scott, respectively and for assisting with interpretation of results, reporting and extension. Financial support for the project is provided by the Saskatchewan Pulse Crop Development Board while seed and inoculant have been provided in-kind by Dekalb and Monsanto BioAg. The many contributions of the professional and technical staff at all locations are greatly appreciated.

Additional Results Tables

Table A1. Treatr planting (T1). M	ment means, o leans within a	overall F-test and column followe	l orthogonal co d by the same le	ntrast results fo etter do not sig	or soybean eme nificantly differ	rgence at appro (Tukey's studen	ximately 2 wee tized range test	ks after t, <i>P</i> ≤ 0.05).
Treatment ^z	India	n Head	Outle	ook ^Y	Me	lfort	Sc	ott
/ Contrast	2015	2016	2015	2016	2015	2016	2015	2016
				T1 Emergence	(plants/m ²) -			
0 P	45.9 a	38.8 ab	_	_	3.2 a	28.5 a	23.9 a	23.3 a
22 P – Sp	46.3 a	43.3 ab	_	_	3.9 a	30.8 a	21.2 a	22.3 a
22 P – Sb	47.0 a	46.0 a	_	_	1.1 a	28.9 a	30.5 a	23.5 a
22 P – Bc	47.4 a	44.1 ab	_	_	3.2 a	35.9 a	25.8 a	20.5 a
45 P – Sp	45.3 a	38.6 ab	_	_	2.1 a	25.8 a	18.2 a	20.0 a
45 P – Sb	44.7 a	41.0 ab	_	_	0.0 a	33.7 a	22.4 a	22.5 a
45 P – Bc	43.3 a	40.0 ab	_	_	0.4 a	26.7 a	26.6 a	21.0 a
90 P – Sp	39.6 a	28.5 b	_	_	0.7 a	25.4 a	14.3 a	11.5 a
90 P – Sb	48.8 a	36.1 ab	_	_	1.1 a	29.7 a	26.8 a	24.8 a
90 P – Bc	49.6 a	40.2 ab	_	_	1.8 a	30.6 a	26.6 a	21.0 a
S.E.M.	3.09	3.66	_	_	1.23	3.76	4.46	3.89
				Pr > F (o-value)			
F-test	0.565	0.068	_	—	0.208	0.617	0.369	0.166
Sp – lin	0.119	0.013	_	_	0.060	0.403	0.122	0.005
Sp – quad	0.463	0.118	_	—	0.625	0.947	0.881	0.431
Sb – lin	0.559	0.289	_	—	0.230	0.738	0.925	0.729
Sb – quad	0.604	0.162	_	_	0.097	0.453	0.994	0.731
Bc – lin	0.477	0.966	-	_	0.240	0.900	0.697	0.681
Bc – quad	0.383	0.574	_	_	0.262	0.922	0.777	0.625

² P = kg P_2O_5 ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast ⁹ Data not available

planting).								
Contract	Indiar	n Head	Out	look	Me	lfort	Sc	ott
Contrast	2015	2016	2015	2016	2015	2016	2015	2016
				T1 Emergenc	e (plants/m ²)			
0 P vs	45.9 a	38.8 a	_	—	3.2 a	28.5 a	23.9 a	23.3 a
Rest	45.8 a	39.8 a	_	—	1.6 a	29.7 a	23.6 a	20.8 a
Pr > <i>F</i>	0.964	0.784	_	_	0.174	0.763	0.948	0.425
Sp vs	43.7 a	36.8 a	_	_	2.2 a	27.3 a	17.9 b	17.9 b
Sb	46.8 a	41.0 a	_	—	0.7 a	30.8 a	26.6 a	23.6 a
Pr > <i>F</i>	0.233	0.134	_	—	0.098	0.276	0.024	0.024
Sp vs	43.7 a	36.8 a	_	_	2.2 a	27.3 a	17.9 b	17.9 a
Вс	46.8 a	41.4 a	_	—	1.8 a	31.1 a	26.3 a	20.8 a
Pr > <i>F</i>	0.242	0.103	_	_	0.602	0.231	0.028	0.228
Sb vs	46.8 a	41.0 a	_	_	0.7 a	30.8 a	26.6 a	23.6 a
Вс	46.8 a	41.4 a	_	_	1.8 a	31.1 a	26.3 a	20.8 a
Pr > <i>F</i>	0.982	0.888	_	_	0.245	0.910	0.946	0.255

Table A2. Contrast comparisons for phosphorus fertilization and placement effects on soybean emergence at T1 (~2 weeks after planting).

^Z P = kg P_2O_5 ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast

planting (T2). M	leans within a	column followe	d by the same I	etter do not sig	nificantly differ	(Tukey's studer	itized range test	t, <i>P</i> ≤ 0.05).
Treatment ^z	Indiar	n Head	Outl	ook ^Y	Me	lfort	Sc	ott
/ Contrast	2015	2016	2015	2016	2015	2016	2015	2016
				T2 Emergence	e (plants/m ²) -			
0 P	49.2 a	49.9 a	_	_	41.2 a	39.8 a	39.7 a	43.0 a
22 P – Sp	49.0 a	53.5 a	_	_	36.6 a	43.3 a	41.1 a	38.8 a
22 P – Sb	50.7 a	52.9 a	_	_	26.0 a	37.3 a	39.4 a	38.5 a
22 P – Bc	51.1 a	53.3 a	_	_	41.9 a	44.3 a	48.5 a	39.3 a
45 P – Sp	50.7 a	50.3 a	_	_	33.4 a	30.6 a	35.9 a	41.3 a
45 P – Sb	48.4 a	49.2 a	_	_	28.8 a	44.1 a	34.2 a	41.0 a
45 P – Bc	47.2 a	50.3 a	_	_	35.9 a	44.3 a	40.1 a	41.3 a
90 P – Sp	45.3 a	42.3 a	_	_	18.3 a	29.3 a	23.4 a	32.0 a
90 P – Sb	52.1 a	47.8 a	_	_	28.5 a	45.1 a	42.3 a	39.5 a
90 P – Bc	52.9 a	50.7 a	_	_	30.3 a	43.7 a	43.3 a	44.0 a
S.E.M.	2.86	2.89	_	_	5.53	3.88	6.53	2.76
				Pr > F (p-value)			
F-test	0.749	0.211	_	_	0.095	0.044	0.432	0.106
Sp – lin	0.339	0.021	_	_	0.624	0.020	0.056	0.005
Sp – quad	0.403	0.111	_	_	0.228	0.876	0.485	0.432
Sb – lin	0.545	0.385	_	_	0.173	0.204	0.805	0.492
Sb – quad	0.671	0.608	_	_	0.118	0.966	0.481	0.588
Bc – lin	0.457	0.936	_	_	0.830	0.575	0.929	0.525
Bc – quad	0.446	0.704	_	_	0.820	0.478	0.800	0.269

Table A3. Treatment means, overall F-test and orthogonal contrast results for soybean emergence at approximately 3 weeks after

 2 P = kg P₂O₅ ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast ^Y Data not available

planting).								
Contrast	Indian Head		Outlook		Melfort		Scott	
	2015	2016	2015	2016	2015	2016	2015	2016
	T2 Emergence (plants/m ²)							
0 P vs	49.2 a	49.9 a	_	_	41.2 a	39.8 a	39.7 a	43.0 a
Rest	49.7 a	50.0 a	_	—	31.1 a	40.2 a	38.7 a	39.5 a
Pr > <i>F</i>	0.877	0.954	_	—	0.720	0.916	0.889	0.182
Sp vs	48.3 a	48.7 a	-	_	29.4 a	34.4 b	33.5 a	37.4 a
Sb	50.4 a	50.0 a	_	—	27.8 a	42.2 a	38.6 a	39.7 a
Pr > <i>F</i>	0.388	0.564	_	_	0.157	0.021	0.342	0.249
Sp vs	48.3 a	48.7 a	_	—	29.4 a	34.4 b	33.5 a	37.4 b
Вс	50.4 a	51.4 a	_	—	36.0 a	44.1 a	44.0 a	41.5 a
Pr > <i>F</i>	0.390	0.227	_	_	0.080	0.005	0.059	0.045
Sb vs	50.4 a	50.0 a	_	_	27.8 b	42.2 a	38.6 a	39.7 a
Вс	50.4 a	51.4 a	_	_	36.0 a	44.1 a	44.0 a	41.5 a
Pr > <i>F</i>	0.997	0.520	_	_	0.005	0.551	0.326	0.363

Table A4. Contrast comparisons for phosphorus fertilization and placement effects on soybean emergence at T2 (~3 weeks after planting).

² P = kg P₂O₅ ha⁻¹; Sp – seed-row placement; Sb – side-band; Bc – pre-seed broadcast