

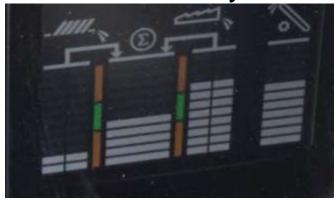
Facts:

- Can = About 72 million acres of grain harvested per year
- Can 2013 Production was about 2.8 billion bushels per year

Estimations:

- 2,500 acres / combine = 28,800 combines to adjust in Can!
- About 97,000 Bushels / combine
- Just 1 bu/acre less loss = 72 million bushels
- At an average of \$7 / bushel = \$504 million

Common Misconceptions:


- Mph = capacity
- More power = More capacity
- Keeping the machine full (driving faster) = less loss
- The losses can't be that bad

Common Misconceptions:

- If I can't find much on the ground the losses are ok
- I can go the same speed with a wider header
- Same settings for one crop will be fine for the entire season
- Same settings for one crop will be fine for the entire day
- My loss monitor tells me my loss

HOW BAD CAN LOSS BE?

What's the cost of loss?

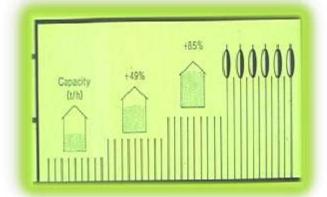
- Canola at \$10/bu
- 160 acres
- 40 ft header
- @ 3 mph (14.5 ac/hr) loss = 1 bu/acre over 11.0 hrs
- @ 4 mph (19.4 ac/hr) loss = 3 bu/acre over 8.2 hrs
- Reduced harvest time by 2.8hr @ \$300/hr = +\$840
- @ 3 mph cost of loss = \$1,600 or \$145/hr
- @ 4mph cost of loss = \$4,800 or \$585/hr
- Loss Increased by \$440/hr by going 1 mph faster
- Cost \$2,360 to go 1 mph faster for 160 acres
- Plus the cost of dealing with the volunteer plants

High Losses! What's Happening?

- More power! Since 1990 combine HP has more than doubled
- Significant material handling improvements
- Maximum throughput is greater than capacity of the processing and cleaning systems in some conditions.
- Modern spreaders and choppers hide the loss

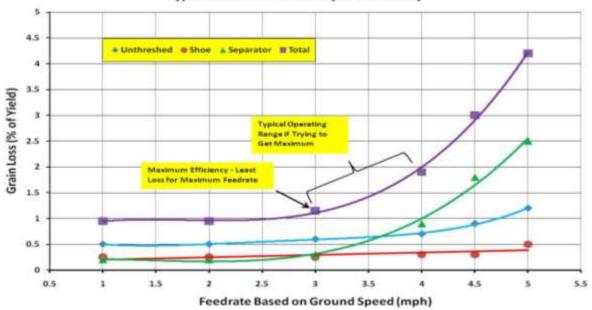
High Losses! What's Happening?

- Assumption that the latest combine has X% more capacity than the previous model in all conditions.
- Assumption that if the combine can send it through the grain will end up in the tank
- Similar ground speeds with wider headers


Improved genetics have increased yields = more

material

High Losses! What's Happening?



- Cut height Impacts MOG to Grain Ratio
 - Tests from 1985 on conventional combine in wheat:
 - Reduce MOG to Grain ratio from 1.20 to 0.85 = 49% capacity increase (6" higher cut height)
 - Reduce MOG to Grain ratio from 1.20 to 0.64 = 85% capacity increase (12" higher cut height)
- Header width increases adjust speed

PAMI COMBINE LOSS CURVE

HOW DO YOU KEEP LOSSES LOW?

Look for loss!

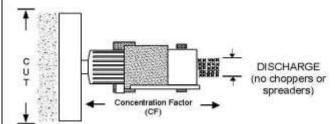
Quantify the loss!

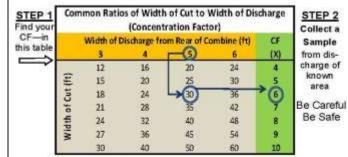
Invest time in checking losses and optimizing settings

Better yet, catch the loss in a pan!

Know the pan area Recommend chopper and spreaders disengaged

Tools Needed




www.pami.ca

Combine Seed Loss Guide

A method for determining seed loss from your combine based on weight, volume, or kernels.

Windrower or header

Continue steps on next page

area

STEP 3 Clean seed from catch

· Sieve using a screen

· Blow out chaff

Hint can use leaf blower and 85 L tub

Weigh, measure (volume), or count seeds (use scale, test STEP 4 tube), see guide.

STEP 5 Calculate loss on per ft2 basis (divide results by ft2 of collection pan)

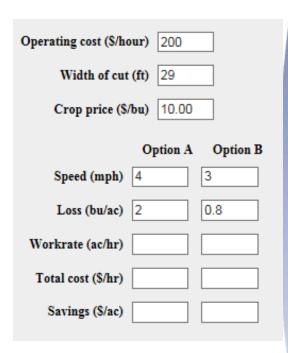
STEP 6 Select Table 2, 3, 4, or 5 to find loss on a per acre basis

Table 2		w	eighing N	Nethod - /	M Crops		100	
Cut widt	th compared	to windrow	draped beh	ind combine	(Concentrat	ion Factor	CF)	Loss
CF	4	5	6	7	8	9	10	lb/ac
	0.4	0.5	0.6	0.7	0.8	0.9	1.0	10
P 0	0.6	0.8	0.9	1.1	1.2	1.4	1.6	15
4 7	1.0	1.3	1.6	1.8	2.1	2.3	2.6	25
# 12	2.1	2.6	3.1	3.6	4.2	4.7	5.2	50
1 squa	5.1	3.9	4.7	5.5	6.2	7.0	7.8	75
2	4.2	5.2	6.2	7.3	8.3	9.4	10.4	100
S and	5.2	6.5	7.8	9.1	10.4	11.7	13.0	125
8 4	5.2	7.8	0.4	10.9	12.5	14.1	15.6	150
3 5	7.3	9.1	10.9	12.8	14.6	16.4	18.2	175
10.00	8.3	10.4	12.5	14.6	16,7	38.7	20.8	200

For bigger collection pure real tiply the values in the grey zone by the number of ff' in the collection Calculations are based upon 0.010413 grams/8* over each 8* in an acre = 1 lb/ac

Cut wi	ith compared	to windro w	draped beh	ind combine	(Concentral	tion Factor -	CFI	Lass
CF	:4	5	6	7		29	10	hu/ac
Loss Collected Behind Combine in 1 ft* in Milliteres (mi)	0.8	1.0	-1.5	1.5	1.7	1.9	2.1	0.25
	1.7	2.1	2.5	2.9	3.3	3.8	4.2	0.50
	2.5	5.1	5.8	4.4	5.0	5.6	6.3	0.75
	3.3	4.2	5.0	5.8	6.7	7.5	8.3	1.00
	4.2	5.2	6.3	7.5	8.3	9.4	10.4	1.25
	5.0	6.3	7.5	8.8	10.0	11.3	12.5	1.50
	5.8	7.3	8.0	10.3	11.7	15.1	14.6	1.75
	6.7	8.3	10.0	11.7	13.4	15.0	16.7	2.00
	8.5	10.4	12.5	14.6	16.7	18.8	20.9	2.50
	10.0	12.5	15.0	17.5	20.0	22.5	25.0	3,00
	11.7	14.6	17.5	20.5	25.4	26.3	29.2	3,50
	13.4	16.7	20.0	23.4	26.7	30.1	33.4	4.00
	15.0	18.8	22.5	26.3	30.1	33.8	37.6	4.50
	16.7	20.9	25.0	29.2	33.4	37.6	41.7	5.00

For higger collection pass multiply the values in the grey area by the number of it' in the collection Calculations are based upon 0.8348875 ml/ft* over each ft* in an aire -1 bu/a:



Online Calculator - Use your smartphone!

http://farmpro.ca/ref/CombineLoss

Crop	Wheat
Density (lbs/bu)	60.0
Yield (bu/ac)	50
Catch area (ft²)	3
Cut width (ft)	29
Discharge width (ft)	5
Loss weight (g)	6
	Compute
Total loss (bu/ac)	
Relative loss (%)	

Crop	Wheat 💙
Density (lbs/bu)	60.0
Seed size (mg)	40
Yield (bu/ac)	50
Count area (ft²)	1
Cut width (ft)	29
Discharge width (ft)	5
Kernel count	20
	Compute
Total loss (bu/ac)	
Relative loss (%)	

By Weight

By Seed Count Cost Calculator

Key Indicators:

 High amount of grain in tailings may indicate improper cleaning system settings

A very clean grain tank sample may indicate high

losses

Key Indicators:

- Stick your hand in the grain tank sample damaged grain will sometimes stick to your hand
- Condition of the straw coming out of the combine
- Watch your yield monitor (in consistent fields)
- Kill stalls you can learn a lot!

Recommendations

- Don't make it a race!
- Don't use all of the available power all of the time
- Learn about your combine
- Invest time in checking losses and optimizing settings

Recommendations

- Do comparisons side by side in same conditions
- Find the source of the loss
- Correlate loss with your loss monitor
- Don't use the same settings for one crop all year
- Don't use the same settings all day
- Be safe!

