2014 Agronomy Update

Chris Holzapfel, MSc, PAg

IHARF Soil & Crop Management Seminar
February 4, 2014
White City, SK
IHARF Sources of Funding

- Grain revenues from approximately 1200 ac of cropland and in-kind donations comprise up to 50% of gross operating funds
- Approximately 40-50 research & demonstration projects funded annually by a combination of government (provincial & federal), producer groups & private industry

<table>
<thead>
<tr>
<th>Source</th>
<th>% of Outside Funding (Cash & In-Kind)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010</td>
</tr>
<tr>
<td>Industry</td>
<td>49%</td>
</tr>
<tr>
<td>Producer</td>
<td>36%</td>
</tr>
<tr>
<td>Government</td>
<td>15%</td>
</tr>
</tbody>
</table>
Winter Wheat 2014 Update
Seeding Rates, Treatments, Fungicides & Nitrogen

IHARF Soil & Crop Management Seminar
Feb. 4, 2015, White City, Saskatchewan
Growing Season Conditions

<table>
<thead>
<tr>
<th>Winter Wheat Factor</th>
<th>Indian Head 2012 / 2013</th>
<th>Indian Head 2013 / 2014</th>
<th>Scott 2013 / 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeding Date</td>
<td>- Sept. 15 (avg)</td>
<td>- Sept. 23 (late)</td>
<td>- Sept. 11 (avg)</td>
</tr>
<tr>
<td>Conditions at Planting</td>
<td>- extremely dry</td>
<td>- adequate soil moisture</td>
<td>- adequate soil moisture</td>
</tr>
<tr>
<td>Time of Emergence</td>
<td>- the next spring</td>
<td>- later that fall</td>
<td>- later that fall</td>
</tr>
<tr>
<td>Spring Stand</td>
<td>- poor / variable</td>
<td>- good / excellent</td>
<td>- good / excellent</td>
</tr>
<tr>
<td>Spring/Summer Moisture</td>
<td>- dry then optimal</td>
<td>- optimal to excessive</td>
<td>- optimal</td>
</tr>
<tr>
<td>Disease Pressure</td>
<td>- moderate / high</td>
<td>- moderate / high</td>
<td>- moderate / high</td>
</tr>
<tr>
<td>Yield Potential</td>
<td>- variable but very high in some cases</td>
<td>- average / above-average</td>
<td>- average / above-average</td>
</tr>
<tr>
<td>Maturity</td>
<td>- just earlier to later than spring wheat</td>
<td>- 7-10 days earlier than spring wheat</td>
<td>- 2 weeks earlier than spring wheat</td>
</tr>
</tbody>
</table>
Seeding Rates & Treatments

Indian Head (2013-14) and Scott (2014)

Seeding Rates
1. 200 seeds m\(^{-2}\)
2. 300\(^z\) seeds m\(^{-2}\)
3. 400 seeds m\(^{-2}\)
\(^z\)2013-14 only

Seed Treatments
1. Untreated
2. Treated (Raxil Pro)

Fungicide (2014 only)
1. Untreated
2. Treated (Twinline @ flag + Prosaro @ anthesis)
Seeding Rates & Treatments
Effects on Winter Wheat Establishment

Indian Head (2013)

F-tests (IH13)
SR: $P < 0.001$
ST: $P < 0.001$
SR*ST: $P = 0.019$

Plants / m2

Seeding Rate

IH13-unt
IH13-trt

0 50 100 150 200 250 300 350 400

200 300 400

a
b

b

IHARF Soil & Crop Management Seminar
Feb. 4, 2015, White City, Saskatchewan
Seed Treatment Effects
June 12, 2013 (Indian Head)

Raxil Pro Treated (left) vs Untreated (right)
200 seeds/m²
Seeding Rates & Treatments Effects on Winter Wheat Grain Yield

Indian Head (2013)

Yield (bu/ac)

Seeding Rate

IH13-unt IH13-trt

F-tests (IH13)
SR: $P = 0.002$
ST: $P = 0.004$
SR*ST: $P = 0.139$

IHARF Soil & Crop Management Seminar
Feb. 4, 2015, White City, Saskatchewan
Seed Treatment Effects
August 2, 2013 (Indian Head)

200 seeds/m² – untreated seed

200 seeds/m² – treated seed
Seeding Rates & Treatments
Effects on Winter Wheat Establishment

Indian Head (2014)

F-tests (IH14)
SR: \(P < 0.001 \)
ST: \(P = 0.006 \)
SR*ST: \(P = 0.906 \)

F - tests (IH14)
SR: \(P < 0.001 \)
ST: \(P = 0.006 \)
SR*ST: \(P = 0.906 \)

IH14-unt
IH14-trt

IHARF Soil & Crop Management Seminar
Feb. 4, 2015, White City, Saskatchewan
Seeding Rates & Treatments Effects on Winter Wheat Grain Yield

Indian Head (2014)

Yield (bu/ac)

Seeding Rate

F-tests (IH13)
SR: $P < 0.001$
ST: $P = 0.044$
SR*ST: $P = 0.815$
Seed Treatment Effects
August 10, 2014 (Indian Head)

200 seeds/m² – untreated seed

200 seeds/m² – treated seed
Seeding Rates & Treatments
Effects on Winter Wheat Establishment

Scott (2014)

<table>
<thead>
<tr>
<th>Plants / m²</th>
<th>SC14-unt</th>
<th>SC14-trt</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>c</td>
<td>ab</td>
</tr>
<tr>
<td>300</td>
<td>bc</td>
<td>a</td>
</tr>
<tr>
<td>400</td>
<td>bc</td>
<td>bc</td>
</tr>
</tbody>
</table>

F-tests (SC14)
SR: $P < 0.001$
ST: $P < 0.001$
SR*ST: $P = 0.655$
Seeding Rates & Treatments Effects on Winter Wheat Grain Yield

Scott (2014)

Yield (bu/ac)

Seeding Rate

F-tests (IH13)
SR: P = 0.205
ST: P = 0.034
SR*ST: P = 0.815
Seed Treatment
Effects on Winter Wheat Yield

IHARF Soil & Crop Management Seminar
Feb. 4, 2015, White City, Saskatchewan
Foliar Fungicide Effects on Winter Wheat Yield

IHARF Soil & Crop Management Seminar
Feb. 4, 2015, White City, Saskatchewan

F-tests (fungicide)
IH14: $P = 0.014$
SC14: $P < 0.001$

Yield (bu/ac)

<table>
<thead>
<tr>
<th>Site</th>
<th>Yield (unt)</th>
<th>Yield (fung)</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH14</td>
<td>69.0</td>
<td>79.3</td>
<td>+ 15%</td>
</tr>
<tr>
<td>SC14</td>
<td>61.5</td>
<td>79.3</td>
<td>+ 29%</td>
</tr>
<tr>
<td>AVG</td>
<td>65.2</td>
<td>79.3</td>
<td>+ 21%</td>
</tr>
</tbody>
</table>
Timing of Foliar Fungicide
Indian Head (2013-14) and Scott (2014)

Treatments:
1) Check (no fungicide)
2) Twinline* (T1-flag)
3) Prosaro** (T2-head)
4) Dual (T1 + T2)

* Pyraclostrobin (65 g/ha) + metconazole (40 g/ha)
** Prothioconazole (100 g/ha) + tebuconazole (100 g/ha)
Timing of Foliar Fungicide Effects on Leaf Disease

Site: $P < 0.001$
Fung: $P < 0.001$
S X F: $P < 0.001$

Leaf Disease (0-12)

- CHECK
- FLAG
- HEAD
- DUAL

Site-Year

IH13
IH14
SC14
AVG
Leaf Disease at Indian Head
July 29, 2013

UNTREATED CHECK

FUNGICIDE APPLIED

IHARF Soil & Crop Management Seminar
Feb. 4, 2015, White City, Saskatchewan
Leaf Disease at Indian Head
Aug. 6, 2014

UNTREATED CHECK

FUNGICIDE APPLIED
Timing of Foliar Fungicide Effects on Fusarium Head Blight

Site: $P = 0.001$
Fung: $P = 0.002$
S X F: $P = 0.013$

Site-Year

IH13 IH14 SC14 AVG

FHB Index (0-100)
Timing of Foliar Fungicide Effects on Grain Yield

- **Site:** $P = 0.035$
- **Fung:** $P < 0.001$
- **S X F:** $P = 0.170$

Site-Year Results

IH13
- **CHECK:** ab
- **FLAG:** ab
- **HEAD:** a
- **DUAL:** cd

1H14
- **CHECK:** d
- **FLAG:** abc
- **HEAD:** bcd
- **DUAL:** abc

SC14
- **CHECK:** cd
- **FLAG:** cd
- **HEAD:** cd
- **DUAL:** B

AVG
- **CHECK:** A
- **FLAG:** A
- **HEAD:** A
- **DUAL:** A

Grain Yield (bu/ac):
- **IH13:** + 14%
- **1H14:** + 11%
- **SC14:** + 37%
- **AVG:** + 19%
Timing of Foliar Fungicide Effects on Test Weight

Site: $P < 0.001$
Fung: $P < 0.001$
S X F: $P = 0.807$

Test Weight (lb/A bu)

<table>
<thead>
<tr>
<th>Site-Year</th>
<th>CHECK</th>
<th>FLAG</th>
<th>HEAD</th>
<th>DUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH13</td>
<td></td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>1H14</td>
<td>d</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>SC14</td>
<td></td>
<td>cde</td>
<td>cde</td>
<td>cd</td>
</tr>
<tr>
<td>AVG</td>
<td></td>
<td>C</td>
<td>C</td>
<td>AB</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IHARF Soil & Crop Management Seminar
Feb. 4, 2015, White City, Saskatchewan
Nitrogen Fertility Options
Indian Head (2013-14)

23 N fertilizer treatments:

Application Rates:
1) 0 N, 2) 75 kg N ha\(^{-1}\), 3) 115 kg N ha\(^{-1}\)

Nitrogen Source:
1) Urea, 2) ESN, 3) NSN/SUPERU, 4) UAN

Placement/Timing:
1) Fall side-band/surface dribble 2) Spring broadcast/surface dribble, 3) 40/60 split
Nitrogen Rate, Placement & Timing
Indian Head 2014

Yield (bu/ac)

- **Nil vs Rest**: 10.0
- **75n vs 115n**: 10.5
- **Fall vs SPR**: 10.1
- **Fall vs SPLIT**: 10.4
- **SPR vs SPLIT**: 10.7

Statistical significance:
- ***: Highly significant
- **: Significant
- ns: Not significant

IHARF Soil & Crop Management Seminar
Feb. 4, 2015, White City, Saskatchewan
Nitrogen Fertilizer Forms
Indian Head 2013

Yield (bu/ac)

Nitrogen Form vs Urea (by timing)

<table>
<thead>
<tr>
<th></th>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>UREA</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>ESN</td>
<td>12.3</td>
<td>12.6</td>
</tr>
<tr>
<td>NSN</td>
<td>12.3</td>
<td>12.7</td>
</tr>
<tr>
<td>UAN</td>
<td>12.5</td>
<td>12.1</td>
</tr>
</tbody>
</table>

ns
Nitrogen Fertilizer Forms
Indian Head 2014

Yield (bu/ac)

<table>
<thead>
<tr>
<th></th>
<th>UREA</th>
<th>ESN</th>
<th>SUPERU</th>
<th>UAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td>10.8</td>
<td>10.4</td>
<td>10.6</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>ns</td>
<td>ns</td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>SPRING</td>
<td>10.8</td>
<td>10.5</td>
<td>10.8</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>*</td>
</tr>
</tbody>
</table>

Nitrogen Form vs Urea (by timing)

IHARF Soil & Crop Management Seminar
Feb. 4, 2015, White City, Saskatchewan
Winter Wheat - Summary

- Winter wheat that doesn’t emerge in fall will still set seed & can yield well – assess stand May 15-25 to allow reseeding if needed
 - 200+ plants m\(^{-2}\) optimal but 90-100 plants m\(^{-2}\) usually viable with adequate fertility and weed control

- Using a seed treatment is recommended, especially when seeding into dry or cold soils (+9% yield increase averaged over 3 sites)

- Applying entire N fertilizer requirements at planting can be risky but banding some N at planting is recommended - particularly when dry
 - Split applications are more costly but perform well under all conditions
 - Slow release N forms (i.e. ESN, SUPERU) are a good fit for winter cereals, but actual benefits will be inconsistent depending on environmental conditions

- Foliar fungicides protect yields and quality under adequate disease pressure (20% yield benefit averaged over 3 sites)
 - If leaf disease is minor at flag-leaf stage, a single fungicide application at early heading is likely most economical
Soybean Agronomy Update
2014 Field Trial Results Summary

IHARF Soil & Crop Management Seminar
Feb. 4, 2015, White City, Saskatchewan
IHARF’s Recent Soybean History

2012: First recent industry funded variety trial on 2012
 – 1 trial
2013: Further industry funded variety & agronomy trials in 2013
 – 6 trials
2014: Extensive program of industry, producer, provincial and federally funded demonstrations and trials
 – 11 trials (~20% of small plot trials)

Seed Yield (bu/ac)

- NSC Reston
- NSC Vito
- NSC Anola

NorthStar Genetics

IHARF Soil & Crop Management Seminar
Feb. 4, 2015, White City, Saskatchewan
Soybean Adaptation Trial
2014 Pulse Science Cluster - GF2

• 3 soybean varieties established along with one variety each of field pea, faba bean and canola
• 3 seeding dates ranging from early May to early June
• PKS blend side-banded to all treatments to supply 12-18-9-9 lb/ac of N-P$_2$O$_5$-K$_2$O-S (105 lb N/ac for canola)
• Granular inoculant applied for field pea and soybean, self-stick peat-based for faba bean
• Herbicide and fungicide applications along with harvest operations were tailored to specific crops & seeding dates
• Tracked development, maturity and seed yield for all plots
August 12 (early seeding)
Seeding Date / Crop Type Effects on Seed Yield

Indian Head 2014

* Preliminary - data not statistically analyzed

Crop Type

- Canola
- Field Pea
- Faba bean
- Sobyean

Yield (bu/ac)

IHARF Soil & Crop Management Seminar
Feb. 4, 2015, White City, Saskatchewan
Soybean Seeding Date Study

Yield (bu/ac)

Source: Garry Hnatowich (ICDC)
Soybean Inoculation
2014 ADOPT Granular Inoculant Trial

- LS002R23 seeded into barley at 210K seed/ac on May 26
- All seed pre-treated with Primo CL inoculant and Cruiser Maxx Vibrance seed treatment
- 11-52-0 side-banded to supply 25 lb P₂O₅/ac
- Cell-Tech granular inoculant seed-placed at either 0, 2, 4, 7 or 14 lb/ac (0x, 0.5x, 1x, 2x & 4x label rate)
- 0.16 l/ac Headline E.C. applied to half the plots
- Early frost on Sept. 10-11, prior to pod colour change
- Straight-combined on Oct. 11-12
Inoculant Effects on Seed Yield

Indian Head 2014

Seed Yield (bu/ac)

Granular Inoculant Rate (kg/ha)

1x label rate

2x label rate

FUNG: $P = 0.922$
INOC: $P < 0.001$
FUNG*INOC: $P = 0.413$

no fung fung avg

-2 0 2 4 6 8 10 12 14 16 18
Soybean Fertility
2014 ADOPT N & P Fertility Trial

• LS002R23 seeded into barley at 210K seed/ac on May 24
• All seed pre-treated with Primo CL inoculant and Cruiser Maxx Vibrance seed treatment
• Cell-Tech granular seed-placed at 3.6 lb/ac (as per protocol)
• 11-52-0 side-banded or seed-placed to supply 0, 18 or 36 lb P₂O₅/ac (0, 20 or 40 kg ha⁻¹)
• 46-0-0 side-banded to supply either no additional N (0) or 50 lb N/ac total
• Early frost on Sept. 10-11, prior to pod colour change
• Straight-combined on Oct. 12
Contrast Results for Emergence

Indian Head 2014

Emergence (plants/m²)

Predetermined Contrast

SB vs SP (all) SB vs SP (20) SB vs SP (40) OP vs 20P OP vs 40P 20P vs 40P ON vs 55N 55N vs 55N-un

ns ns ns ns ns ns *** ns
N & P Effects on Seed Yield

Indian Head 2014

Yield (bu/ac)

Fertilizer Treatment

Trt: $P < 0.001$
Contrast Results for Yield

Indian Head 2014

Yield (bu/ac)

Predetermined Contrast

ns
ns
ns

ns

Soybean Seed Rate & Depth
2014 Pulse Science Cluster - GF2

- NSC Moosomin seeded into barley stubble on May 24
- Rates of 61k, 121k, 162k, 203k, 243k, 283k or 334k seeds/ac
- Target seeding depth of 3/4” (shallow) or 1.5” (deep)
- All seed pre-treated with Nodulator Pro inoculant and Cruiser Maxx Vibrance seed treatment
- 11-52-0 side-banded to supply 25 lb P₂O₅/ac
- Cell-Tech granular inoculant seed-placed at 3.6 lb/ac
- Early frost on Sept. 10-11, prior to pod colour change
- Straight-combined on Oct. 13
Soybean Seeding Rate & Depth Effects on Emergence

Indian Head 2014

Emergence (plants/m²)

Seeding Rate (1000 seeds/ac)

RATE: \(P < 0.001 \)

DEPTH: \(P = 0.113 \)

RATE*DEPTH: \(P = 0.350 \)

Linear: \(P < 0.001 \)
Soybean Seeding Rate & Depth Effects on Seed Yield

Indian Head 2014

Seed Yield (bu/ac) vs. Seeding Rate (1000 seeds/ac)

- 0.75" depth
- 1.5" depth
- Linear (0.75" depth)
- Linear (1.5" depth)

Statistical significance:
- **RATE:** $P < 0.001$
- **DEPTH:** $P < 0.001$
- **RATE*DEPTH:** $P < 0.001$
- Linear (0.75"): $P < 0.001$
- Linear (1.5"): $P < 0.001$

Note: ns indicates non-significant difference at the 0.05 level.
Soybean Seeding Rate & Depth Effects on Minimum Pod Height

Indian Head 2014

Rate: $P < 0.001$

Depth: $P = 0.105$

Rate*Depth: $P = 0.411$

Quadratic: $P = 0.021$

Seeding Rate (1000 seeds/ac)
Soybean Seeding Rate & Depth Effects on Seed Size

Indian Head 2014

Pod Height (cm)

0.75" depth

1.5" depth

100.0 g/1000 seeds (A)

96.3 g/1000 seeds (B)

Seeding Rate (1000 seeds/ac)

RATE: P = 0.871
DEPTH: P < 0.001
RATE*DEPTH: P = 0.407
Soybean Row Spacing & Seed Rate
2014 Pulse Science Cluster - GF2

- P002-T04R seeded into barley stubble on May 24
- Seeding rates of 162K, 203K or 243K seeds/ac
- Row spacing of 10”, 12”, 14”, 16” or 24”
- All seed treated with PPST 120+ inoculant and Evergol Energy seed treatment
- 11-52-0 side-banded to supply 25 lb P$_2$O$_5$/ac
- Cell-Tech granular inoculant seed-placed at 3.6 lb/ac
- Early frost on Sept. 10-11, prior to pod colour change
- Straight-combined on Oct. 12
Soybean Row Spacing & Seed Rate Effects on Emergence

Indian Head 2014

Emergence (plants/m²)

Row Spacing (inches)

- 162K
- 203K
- 243K
- avg
- Linear (avg)

SPACE: $P = 0.014$
RATE: $P < 0.001$
SPACE*RATE: $P = 0.679$
Linear: $P = 0.008$
Soybean Row Spacing & Seed Rate Effects on Seed Yield

Indian Head 2014

Yield (bu/ac) vs. Row Spacing (inches)

- 162K
- 203K
- 243K
- avg
- Poly. (avg)

SPACE: $P < 0.001$

RATE: $P < 0.001$

SPACE*RATE: $P = 0.148$

Quadratic: $P < 0.001$
10” spacing /243K rate

24” spacing /243K rate
Soybean Plant Population Study

Yield (bu/ac)

- Red dots: 20 inch
- Blue dots: 10 inch

R² = 0.9962
R² = 0.9337

Source: Garry Hnatowich (ICDC)
Soybeans in SK - Take Home Messages

- Choose a very early maturing variety, many are available
- Don’t seed too early (May 15-30 and > 10 °C soil)
- Seed < 1” deep at 220-240K seeds/ac – use a land roller
- Well adapted to wider (>12”) rows, should perform well within range of 10-24” row spacing (inoculate accordingly)
- Inoculate well – liquid inoculant plus ≥ 2x rate of granular
- Large phosphorus users – highest yields in high P soils, but soybeans respond well to P fertilizer in cool, low P soils
- Starter N? Unlikely to be beneficial under most conditions & with adequate inoculation...more research required
- Expect to harvest in early October