Canaryseed

- Macro and Micro nutrients
- Plot size and Septoria Leaf Mottle
- Cultivar testing
 - Pierre Hucl
No Chloride Chloride
Chloride and Grain yield Yield

Yield (lbs/acre)

Grain Yield

0K-0Cl
10K-9.1Cl
20K-18.2Cl
30K-27.3Cl
10K-0Cl
20K-0Cl
30K-0Cl
0K-9.1Cl
0K-18.2Cl
0K-27.3Cl
• Canaryseed is more responsive to Cl than other cereals

• Does it respond differently than other cereals to macro and micro nutrients?
Macro and Micro Nutrient Trial

Nutrients

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>CL</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>S</td>
<td>15</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cu, Z, Mg, B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Locations

• Indian Head — Indian Head Agricultural Research Foundation
• Swift Current - Wheatland Conservation Association
• Redvers — South East Research Farm
• Yorkton — East Central Research Foundation
• Melfort - North East Research Foundation
• Scott — Western Applied Research Corporation
Funding

ADOPT – Saskatchewan Ministry of Agriculture
<table>
<thead>
<tr>
<th></th>
<th>Low Area</th>
<th>Higher Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>P</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>CL</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>
Grain Yield (lb/acre)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P</th>
<th>CL</th>
<th>S</th>
<th>Cu</th>
<th>Zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>15</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>0</td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>60</td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>60</td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>60</td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>60</td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>60</td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>60</td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>Yes</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Melfort

Yes

 Cu, Z, Mg, B
Scott

Grain Yield (lb/acre)

<table>
<thead>
<tr>
<th>N</th>
<th>0</th>
<th>15</th>
<th>30</th>
<th>30</th>
<th>30</th>
<th>60</th>
<th>60</th>
<th>60</th>
<th>60</th>
<th>60</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>CL</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>S</td>
<td>15</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
</tr>
<tr>
<td>Cu, Z, Mg, B</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Overall Results

- N Fertilizer: response at all 6 locations
 - Optimum amount ranged from 15 to 90 kg/ha
- Chloride: response at 3 of 6 locations
- Phosphate: response at 1 of 6 locations
- Zinc: response at 1 out of 6 locations
- Still need to incorporate soil test results
Septoria Leaf Mottle
To spray or not to spray that is the question

W.E. May
Agriculture and Agri-food Canada
Septoria Leaf Mottle
Plot Size (ft)

- 13 x 35
- 26 x 35
- 39 x 35
- 13 x 70
- 26 x 70
- 39 x 70

Test is conducted in Two fields one with no canaryseed and the other with the rest of the field seeded to canaryseed.
Fungicide Treatments

- Check
- Tilt
- Twinline
- Prosaro
- Prosaro late
Plot Size and Septoria Leaf Mottle

<table>
<thead>
<tr>
<th>Plot Size</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2013</td>
<td>2014</td>
</tr>
<tr>
<td>Field Type</td>
<td>2013</td>
<td>2014</td>
</tr>
<tr>
<td>Non-Canaryseed</td>
<td>2013</td>
<td>2014</td>
</tr>
<tr>
<td>Canaryseed</td>
<td>2013</td>
<td>2014</td>
</tr>
<tr>
<td>Least Significant Difference (kg/ha)</td>
<td>2013</td>
<td>2014</td>
</tr>
<tr>
<td>13 x 35</td>
<td>323</td>
<td>323</td>
</tr>
<tr>
<td>136</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>26 x 35</td>
<td>246</td>
<td>246</td>
</tr>
<tr>
<td>104</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>491</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>39 x 35</td>
<td>341</td>
<td>341</td>
</tr>
<tr>
<td>84</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>13 x 70</td>
<td>219</td>
<td>219</td>
</tr>
<tr>
<td>109</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>26 x 70</td>
<td>178</td>
<td>178</td>
</tr>
<tr>
<td>114</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>39 x 70</td>
<td>239</td>
<td>239</td>
</tr>
<tr>
<td>141</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>164</td>
<td></td>
</tr>
</tbody>
</table>
Septoria Leaf Mottle and Yield

Yield (lbs/acre)

- Check
- Tilt
- Twinline
- Prosaro
- Prosaro late

FS 2013 13 x35 26 x 70 13 x 35 26 x 70

Yield (lbs/acre)
Conclusions

After two years the 70 ft plot length is producing more consistent results than the 35 ft plots

Funding

ADF – Saskatchewan Ministry of Agriculture
Research For 2015 and Beyond

• Septoria plot size – ADF funding will continue
• Nutrient Research - reapplied for ADOPT funding
• Cropping Sequence Research – Start in spring of 2015
• Aphids – Apply this spring for research beginning in 2016
Oat

Screening Cultivars for test weight stability at high levels of N fertilizer

Row width x Rotation x seeding rate
Grain Yield (bus/acre)

~Optimum N Rate @ 60 kg N/ha
Test weight (g/0.5 L)

~Optimum N Rate @ 60 kg N/ha
Grain Yield

Yield (bu acre⁻¹)

N Rate (kg N/ha)

- ▲ No Fungicide
- ▼ Headline
- △ Stratego
Test Weight

![Graph showing Test Weight (g 0.5m⁻¹) vs. N Rate (kg N/ha) for IH 2012, Mel 2012, IH 2013, and Mel 2013.]
Nitrogen Rate and Cultivars

Test Weight (g/0.5L)

- AC Assinaboia
- CDC Pacer

Nitrogen Rate (kg/ha)
Yield - N x Cultivar

Melfort

Bu / acre

Stride | CDC Minstrel | AC Morgan | CDC Seabiscuit

- Stride
- CDC Minstrel
- AC Morgan
- CDC Seabiscuit

40 kg N/ha
- 60
- 80
- 120
Test weight - N x Cultivar

Melfort

Stride CDC Minstrel AC Morgan CDC Seabiscuit

40 kg N/ha 60 80 120
Lodging - N x Cultivar

Indian Head

- Stride
- Pinnacle
- CDC Orrin
- CDC Big Brown

Lodging (0-10)

40 kg N/ha
60
80
120

Red: 40 kg N/ha
Blue: 60
Green: 80
Black: 120
Yield - N x Cultivar

Indian Head

Bu / acre

Stride | Pinnacle | CDC Orrin | CDC Big Brown

60 kg N/ha

40 kg N/ha

60

80

120

130
Test weight - N x Cultivar

Indian Head

Stride | Pinnacle | CDC Orrin | CDC Big Brown

- 40 kg N/ha
- 60
- 80
- 120
Yield - N x PGR Trinexapac

Bushels/acre vs Trinexapac concentration

- 5 kg N/ha
- 50
- 100
- 150
Test Weight - N x PGR

Trinexapac

<table>
<thead>
<tr>
<th>Trinexapac</th>
<th>0</th>
<th>70</th>
<th>100</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 kg N/ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

g /0.5L

215
220
225
230
235
240
245
250
Black Medic as a Cover Crop?
Experiment

- Medic and non-Medic Blocks

- Flax - Wheat - Oat Rotation

- Three levels of N, 20, 60 and 100% of recommended N (applied + residual)
 - Flax 110 kg ha\(^{-1}\)
 - Oats 100 kg ha\(^{-1}\)
 - Wheat 135 kg ha\(^{-1}\)
Grain Yield:
Medic and N Fertilizer

Grain Yield (kg ha\(^{-1}\))

Nitrogen Fertilizer (% of Recommended)

- Green line: medic
- Blue line: nomed
Fall Residual Soil P (0-60cm)

Soil Residual P (kg ha$^{-1}$ in 0-60cm)

Percentage of Recommended Nitrogen

- **medic**
- **nomed**
Fall Residual Soil P

P Supply Rate (ug cm^-2) vs Percentage of Recommended Nitrogen
Sunflower Research

• Development of early season hybrid and inbred lines for Saskatchewan
 – Brent Hulke, USDA

• Hybrid Testing
 – New oil profile, Nusun

• Seeding Rate Response

• Volunteer Canola Suppression
 – Authority + Assert
Development of early season hybrid and inbred lines

- Evaluated several crosses
- X713
 - 5 locations
 - Harvested kernel moisture below the check
 - Yield was 115% of the check
 - Nusun oil quality
 - One year

Volunteer Canola Suppression
Niger

- *Guizotia abyssinica* - evolved in Africa
The Customer
• No access to US market

• Currently niger is a crop for growers who want to vertically integrate
 – growing
 – cleaning
 – Marketing

• To access Europe more consistent yield is required
Barley Research

- Beta-Glucan in Hull-less Barley
- Preharvest Glyphosate
- N rate x cultivar
- PGR + seed treatment + fung at flag + fung at anthesis
- PGR’s
 - Chlormequat chloride
 - Ethephon (Ethrel)
 - Trinexapac-Ethyl (Palisade 2EC USA, Moddus UK, Primo Maxx - turfgrass)
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Plant Height</th>
<th>Lodging</th>
<th>Grain yield</th>
<th>Test Wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>87.88a</td>
<td>0.81a</td>
<td>89.02a</td>
<td>335.8a</td>
</tr>
<tr>
<td>Chlormequat</td>
<td>85.78a</td>
<td>0.45a</td>
<td>91.95a</td>
<td>336.6a</td>
</tr>
<tr>
<td>Ethephon</td>
<td>82.00b</td>
<td>0.21a</td>
<td>90.95a</td>
<td>330.9b</td>
</tr>
</tbody>
</table>
Barley PGR 2014

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Average Height</th>
<th>Lodging</th>
<th>Grain yield</th>
<th>Test Wt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HEIGHT</td>
<td>Belgian</td>
<td>Yield</td>
<td>test weight</td>
</tr>
<tr>
<td></td>
<td>cm</td>
<td>Scale</td>
<td>bu/ac</td>
<td>g/0.5 L</td>
</tr>
<tr>
<td>none</td>
<td>87.71 a</td>
<td>1.19a</td>
<td>61.27 a</td>
<td>303.53a</td>
</tr>
<tr>
<td>Ethephon</td>
<td>73.96 c</td>
<td>0.20b</td>
<td>58.40 b</td>
<td>301.52a</td>
</tr>
<tr>
<td>Chlormequat</td>
<td>85.67 a</td>
<td>0.57 ab</td>
<td>61.75 a</td>
<td>302.21a</td>
</tr>
<tr>
<td>Trinexapec</td>
<td>82.83 b</td>
<td>0.31 b</td>
<td>61.95 a</td>
<td>302.01 a</td>
</tr>
</tbody>
</table>
The People Who Do The Work

- Orla Willoughby
- Randy Shiplack
- Chris Omoth
- Kevin Willoughby
- Melanie Reid
- Stephanie Horner
- Jill Filmer
Aphid Populations in Canaryseed

Aphid population (Aphids/head)

Date

- Head
- Leaf Sheath