Hybrid Canola – Plant Populations 101

Laryssa Grenkow¹, Tristan Coelho¹, Sherrilyn Phelps², and Anne Kirk³

¹Western Applied Research Corporation

²Saskatchewan Ministry of Agriculture

³University of Manitoba

Why are plant populations important?

- Maximize yield potential
- Maximize net revenue
- Weed competition
- Crop uniformity
- Shorten crop maturity
- Lodging

Plant density is more important than actual seeding rate!!!

Gone are they days of bushel and a peck!

Seed Size

2.9 TKW 5.5 TKW 7.3 TKW (100 seeds of each)

How should you calculate seeding rates?

- Thousand kernel weight (grams)
- Expected emergence (%) Usually 40-60% for canola
- Target plant population (plants m⁻²)

```
Seeding rate (kg/ha) = target population x TKW expected seeding survival
```

Ex. Canola =
$$80 \times 5$$
 = 8 kg/ha (7 lbs/acre)

Plant Populations and Yield Potential

Canola Council recommends targeting for at least **70-140 plants m⁻²** (7-14 plants ft⁻²)

Yield is generally compromised at plant stand **below 50 plants m⁻²** (5 plants ft⁻²)

Canola Council of Canada Recommendation < 50 plant m⁻²

- Where did this number come from?
 - CCC canola manipulation trials 1999 2002
 - Dr. Gan -2003 study
 - Dr. Shirtliffe, 2009 meta-analysis of 35 experiments

Canola Manipulation Trial Results (ccc 2002)

Seeding Rate (Ibs/acre)	Plants/ m ²	Yield (bu/ac)	Average Maturity (days)	Range Maturity (Days)
Early Planting Date				
1	20	30	103	84-122
3	50	35	99	82-113
5	80	37	98	82-113
Normal Planting Date				
1	28	31	100	81-114
3	59	36	98	81-113
5	95	37	97	80-111

Dr. Gan and associates (1999-2001)

Shirtliff & Hartmann (2009)

Other factors leading up to this project:

- **1. Late spring frosts** = many acres of canola affected, reseeding decisions
- 2. New hybrids available high yields even with lower plant densities
- 3. Increasing seed costs producers wanting to reduce seeding rates

Questions:

At low plant populations can new hybrids compensate?

At what population is yield of hybrid canola reduced?

Does it pay to re-seed?

What should we target for plant populations?

Plant Population Trial

Objective: Determine the **minimum plant population** required to reach **maximum hybrid canola yield**

5 locations (2010 – 2012)

- Scott WARC
- Saskatoon U of S
- Melfort NARF
- Swift Current Wheatland Conservation
- Indian Head IHARF

- Total usuable site years = 11
- 5440 LL variety used

5, 10, 20, 40, 80, 150, 300 seeds/m²

5 seeds/m2

150 seeds/m2

Plant Populations and Yield Potential

90% of maximum yield achieved at 18 plants m⁻² 100% of maximum yield achieved at 28 plants m⁻²

90% of maximum yield achieved at 18 plants m⁻² 100% of maximum yield achieved at 28 plants m⁻²

Canola Plasticity.....

Other considerations....

Plant Population Study Conclusions

- Maximum yield can be reached, on average, with 28 plants/m² (15-41 range) under good environmental conditions
- A uniform plant stand is crucial at low plant populations
- Good weed control is important with low plant populations
- When plant stands are inadequate, what are our options?

Re-Seeding Canola Trial

Objective: Determine the **yield response** and **economic returns** of re-seeding canola

Treatments

Control

- 5440 LL 40 seeds/m2 (low plant population)
- 5440 LL 150 seeds/m2 (high plant population)
- Seeded Early- to Mid-May

Re-seeded

- 5440 LL 150 seeds/m2
- 9350 RR 150 seeds/m2
- ACS-18 polish 150 seeds/m2

Seeded Early- & Mid-June

Early May (Low Population)

Early May (High Population)

Early June (Re-Seed)

Mid June (Re-seed)

Low vs. Normal Early May (5440LL)

Early June vs. Mid June (5440LL)

Early June vs Mid June (9350 RR)

Early June vs Mid June (Polish – ACS-C18)

Economic Analysis - Cost Calculations

Seeding (5 lbs/acre) or (5.6 kg/ha)

Hybrid \$12.4/lb = \$62/acre

Polish \$4.75/lb = \$23.75/acre

Seeding \$15.44/acre

(Seed costs obtained in spring 2013 from industry and seeding cost from Custom Rate Guide)

In Crop Herbicide Application Costs

LL Canola Liberty \$10.50/acre

Centurion \$3/acre

RR Canola Glyphosate \$2.25/acre (0.5L)

Polish Muster \$20/acre

graminicide \$6/acre

Spraying application cost \$5/acre

Extra Expenses Associated with Reseeding

	Spring Seeded				Reseeded Crops					
	544	40LL	5440	5440LL low						
	No	rmal	рр		544	OLL	935	50	AC:	S-18
seed					\$	62.00	\$	62.00	\$	23.75
seeding equipment					\$	15.44	\$	15.44	\$	15.44
in crop herb	\$	24.00	\$	24.00	\$	13.50	\$	2.25	\$	26.00
burn to reseed	\$	-	\$	-	\$	2.25	\$	2.25	\$	2.25
spray cost	\$	10.00	\$	10.00	\$	10.00	\$	10.00	\$	10.00
TOTAL	\$	34.00	\$	34.00	\$	103.19	\$	91.94	\$	77.44
Extra Costs for										
reseeding					\$	69.19	\$	57.94	\$	43.44

Re-seeding gain or loss compared to leaving low plant stand

			Reseeded Crops						
Seeding Date	early	May	E	early Jun	е	Mid June			
INCOME	5440LL Normal		5440LL	9350	ACS-18	5440LL	9350	ACS-18	
yield (bu/acre)	37.9	27.6	37.3	32.3	20.3	22.7	22.2	16.7	
crop value \$/acre	\$492	\$359	\$485	\$419	\$264	\$295	\$289	\$217	
Added expenses			\$69	\$58	\$43	\$69	\$58	\$43	
Difference from low pp	\$133		\$57	\$2	(\$139)	(\$134)	(\$128)	(\$186)	

With SCIC Establishment Benefit (\$60/acre)

			Reseeded Crops						
Seeding Date	early	May	E	early Jun	е	Mid June			
	5440LL	5440LL							
INCOME	Normal	low pp	5440LL	9350	ACS-18	5440	9350	S-18	
yield (bu/acre)	37.9	27.6	37.3	32.3	\ \(\string \)	2		16.7	
crop value \$/acre	\$492	\$359	\$485	\$419	\$. 4	\$295	,	\$217	
Added expenses			\$69	\$58		d.	<u> </u>	43	
Difference from low pp	\$133		\$57	\$2	(_13	(\$13	(\$128)	ر 186)	
Add SCIC reseeding Benefit			\$117	\$62	(\$79)	(\$74)	(\$68)	(\$126)	

SCIC Re-seeding Program

Hybrid Canola

40+ Established

12 – 40 Choice

<12 Not Established

- Other factors also considered (uniformity across field, plant vigor, frost free days, etc.)
- Will pay \$60/acre

Gain or loss where plant density in SCIC Choice Range

Early June Reseed	Stoon 2010	Melfort 2012	IH 2010	SC 2011	Stoon 2012	SC 2012	Average	+ SCIC		
plts/m2	29	28	19	18	17	16	21			
5440LL	\$297	\$68	\$37	(\$129)	(\$6)	(\$156)	\$19	\$79		
9350RR	\$222	(\$18)	\$4	(\$87)	\$30	(\$133)	\$3	\$63		
		Choice Range								

50/50 chance no SCIC for reseed to pay 40/60 chance with SCIC for reseed to pay

Summary of Economics

- Best to target good plant populations in the first place (70-140 plants m⁻²)
- What to do when "stuff" happens
 - Re-seeding to polish canola does not pay
 - Re-seeding to canola in mid June does not pay
 - Re-seeding to high yielding hybrid canola in early June when in the choice range (12-40 plants m⁻²) has 50% chance of showing positive returns
 - SCIC EB (\$60/acre) makes re-seeding in early June the more economical choice and helps cover risks

Things to consider

- EB with SCIC does cover extra costs to re-seed
- Re-seeding when in choice range provides also gives you production coverage (up to 80%)
- When in "choice range", make decisions to re-seed based on:
 - Plant uniformity of field
 - Ability to control weeds
 - Soil moisture conditions and forecasts
 - Harvest management (low plant stands more variable)

Questions:

At low plant populations can new hybrids

compensate?

YES by branching

At what population is yield of hybrid canola reduced?

WARC - 28 (15 to 41) vs 50 (Gan & CCC) for max yield WARC - 18 vs 45 (Shirtliff) to achieve 90% max yield

SCIC – 12 - 40 is range of choice

Does it pay to re-seed?

Not in mid June and not to polish canola 50/50 chance without SCIC early June SCIC EB covers additional reseeding costs

- Make decisions based on:
 - Uniformity of field
 - Ability to control weeds
 - Soil moisture conditions and forecasts
 - Harvest management (low plant stands more variable)
 - Frost free days left in growing season

What should we target for plant populations?

Good question....

We know < 41-50 plants m⁻² yields can start decreasing Target 1.5 to 2x this rate = 60 to 100 plants/m² CCC recommendation of 70 as a minimum up to 140?

Thank You

- SaskCanola Pat Flaten
- Site Collaborators:
 - IHARF Indian Head Chris Holzapfel
 - NARF Melfort Cecil Vera
 - U of S Saskatoon Steve Shirtliff
 - Wheatland Conservation Swift Current Bryan Nybo
- Sherrilyn Phelps, Anne Kirk, Tristan Coelho, Morley Ayars, & Eric Johnson

